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Summary. Moveout corrections based on hyperbolic traveltime approximations are usually expected to
cause distortions of the wavelet, especially for comparatively small traveltimes and large offsets. This kind
of pulse stretch effect is well known from the conventional NMO correction and requires appropriate muting
of the pre-stack data before stacking. However, data-driven imaging methods based on multi-parameter trav-
eltime approximations like Multifocusing, delayed hyperbola approaches, or Common-Reflection-Surface
(CRS) stack do not expose such a stretch phenomenon. We briefly review the origin of the pulse stretch
effect and relate it to the artifical smoothness of typically applied NMO velocity fields. Data-driven imaging
methods like CRS stack introduce a systematic variation of the stacking velocity to avoid the unwanted pulse
stretch. In contrast, the associated kinematic CRS wavefield attributes remain virtually constant and turn out
to be a more appropriate parameterization of the recorded wavefield.

Introduction. Conventional imaging methods often systematically distort the wavelet with respect to its
length and its shape, leading to a reduced frequency content and the risk of misinterpretation. These effects
occur even if the stacking operators are kinematically correct: they are due to the usually smooth parameter-
ization of the model. This kind of unwanted changes of the wavelet do not occur during the CRS stack and
similar data-oriented imaging methods like Multifocusing (Berkovitch et al., 1994; Landa et al., 1999) or the
delayed hyperbola approaches by de Bazelaire (1988); Thore et al. (1994). To explain this fact, we briefly
review the reasons for the pulse stretch in conventional imaging methods for a simple example where the
respective stacking operators are kinematically exact. We discuss different approximations for the stacking
trajectories for neighboring samples along the wavelet in band-limited data and compare them to the stack-
ing velocities determined by means of the CRS stack. It turns out that the optimum stacking velocity model
is not smooth but reveals a systematic variation of the stacking velocity along the wavelet. Reformulated in
terms of kinematic wavefield attributes, these variations can be removed to a large extend and allow a more
reliable extraction of information for subsequent processing steps like inversion.

CMP traveltimes along the wavelet. Pulse stretch even occurs for events with perfectly hyperbolic trav-
eltime curves. To focus on this effect, we only investigate such idealized situations in the following. For
the sake of simplicity, we consider the simplest situation, a plane horizontal reflector with homogeneous
overburden. For a reflector at depth z0 and a velocity v0, the kinematic reflection response is given by
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2
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0 +

4h2
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0

, (1)

where t0 = 2z0/v0 denotes the zero-offset (ZO) traveltime and h is the half-offset. For a medium without
attenuation, the pre-stack data can be represented as a convolution of the wavelet and the kinematic reflec-
tion response (phase shifts are not considered here): the pulse length is identical for all shot and receiver
locations. An undistorted result can be obtained by stacking along the kinematic reflection response (1)
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vertically shifted by ∆t to all locations within the wavelet of length T :

t(h,∆t) =

√
t2
0 +

4h2

v2
0

+ ∆t with − T
2
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2
, (2)

where we assume that the wavelet is centered around the traveltime t. An NMO correction applied with the
velocity v0 yields the correct traveltimes for the center of the wavelet. However, the NMO operator attached
to a neighboring ZO traveltime differs from the corresponding iso-phase curve (2). The time shift between
two NMO operators with the same stacking velocity but attached to different ZO traveltimes is not constant
but decreases with increasing offset. This leads to the pulse stretch effect.

Alternative approximation of the stacking velocity. Obviously, a constant stacking velocity model is not
suited to describe the iso-phase curves in the input data, not even in the simplest possible situation: a more
appropriate description of the stacking velocity along the seismic wavelet is required. If we express the
shifted hyperbola (2) in the same form as the hyperbolic operator (1) and in terms of the ZO traveltime t0
and the velocity v0 defined at the center of the wavelet, we obtain a new stacking velocity:
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0
− v2

0 t0 ∆t
. (3)

This velocity explicitely depends on h, in other words, the shifted hyperbola (2) cannot be expressed by
means of a single stacking velocity. For an exact description of the iso-phase curves in the data, we would
have to allow an additional parameter, the time shift ∆t itself. To avoid this additional parameter, a reasonable
approximation of vshift is required. In conventional processing, vshift is assumed to coincide with v0, which
only holds for h→∞. For the simulation of ZO sections, a more reasonable approach is to require a constant
curvature at offset zero of all stacking hyperbolae. The corresponding stacking velocity reads

v2
shift,c(∆t) =

t0
t0 + ∆t

v2
0 . (4)

Numerical example for a 1-D model. To analyze the behavior of the stacking velocity derived by means
of the CRS stack method, we defined a simple 1-D model consisting of three horizontal reflectors at depths
zi = 1000,1080,1160 m with a constant velocity v0 = 1500 m/s such that all events are perfectly hyperbolic.
A CMP gather with half-offsets up to 500 m was simulated with a fold of 31 and a Ricker wavelet with
30 Hz peak frequency. Some noise was added to avoid artifacts during the CRS processing. The modeled
ZO trace is shown on the left-hand side of Figure 1a. The CMP gather served as input to the first step
of the CRS stack processing scheme, the automatic CMP stack. This process also uses the one-parameter
operator (1). However, it determines the optimum stacking velocity separately for each simulated ZO sample
without imposing any smoothness. The resulting stacked trace is shown on the right-hand side of Figure 1a:
the wavelet is recovered without any stretch. The associated coherence values calculated along the stacking
trajectories are depicted in Figure 1b. The detected stacking velocity is shown as solid line in Figures 1c
and d. As expected from the considerations in the previous section, it is not constant along the wavelet, but
exposes a characteristic “jig saw” appearance: it decreases along the wavelet with increasing traveltime.
Let us now compare the detected velocity to the expected behavior for constant ZO curvature according to
Equation (4). The analytic values are displayed as dashed lines in Figure 1c, of course separately for each
event. We observe a very good fit to the semblance-based results extracted from the pre-stack data. Let us
go a step further: the assumption of constant curvature only provides a constant time shift close to offset
zero. However, a finite half-offset range of 0 . . .500 m contributes to the stack. Thus, one might argue that
Equation (3) might provide an even better fit for a certain “average offset” such that the deviation from the
constant time shift is as small as possible for all given offsets. We analyzed this by minimizing the least
square error between the shifted hyperbolae and its one-parameter approximation. The result is very similar
to the constant curvature approach shown in Figure 1d and fits the detected velocities even slightly better.
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Figure 1: Synthetic example: a) slightly noisy modeled ZO trace vs. the automatic CMP stack result, b) co-
herence measure semblance calculated along the stacking hyperbolae, c) detected stacking velocities (solid
line) vs. forward-calculated stacking velocities (dashed lines) for hyperbolae with the same curvature at
offset zero, and d) same as c) but for hyperbolae providing the best kinematic fit within the given offset
range.
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Figure 2: Synthetic example: radius of the NIP wavefront. In contrast to the stacking velocity, RNIP
is almost constant along the wavelet and—for this simple model—represents the reflector depths z i =
1000,1080,1160 m.
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Behavior of the kinematic wavefield attributes. In the following, we will reformulate the preceeding
sections in terms of the CRS wavefield attributes. The CRS operator is also a hyperbolic representation and
its shape also explicitly depends on the ZO traveltime t0. Expressed in terms of midpoint coordinate xm and
half-offset h, it reads

t2
hyp (xm,h) =
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+
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]
, (5)

where v0 represents the near-surface velocity and
(
t0,x0

)
is the considered ZO location. The CRS operator

is parameterized by three kinematic wavefield attributes defined at the surface location x0, namely α , the
emergence angle of the normal ray, RNIP, the radius of the normal-incidence-point (NIP) wavefront, and RN,
the radius of the normal wavefront. The relation of these attributes to two so-called eigenwave experiments
can, e. g., be found in Jäger et al. (2001). For the considered 1-D model, all rays are vertical and all normal
wavefronts are plane, i. e., α = 0 and RN =±∞ for all three events. Accordingly, the CRS operator reduces
to

t (h) =

√
t2
0 +

2 t0 h2

v0 RNIP
(6)

for any midpoint location xm. For the center of the wavelet, this represents the exact kinematic reflection
response of the reflector with RNIP = zi. This is an alternative formulation of the CMP moveout formula (1).
Reformulating Eq. (4) in terms of RNIP we readily observe that RNIP remains constant along the wavelet.
This is equivalent to the assumption of constant ZO curvature. Indeed, the NIP wavefront radius (Figure 2)
is almost constant for each event. This radius appears to be a more natural parameter for the traveltime
curves. So far, we only considered the CMP gather. As the CRS operator is hyperbolic for any configuration
that includes the simulated ZO location, e. g., common-shot or common-receiver gather or the ZO section,
the same behavior is expected in any case. The additional linear term in any gather except the CMP gather
does not change the principal properties. The respective radius of curvature, in general a linear combination
of 1/RNIP and 1/RN, will remain almost constant along the wavelet and the pulse stretch will be avoided.

Conclusions. We briefly reviewed the origin of pulse stretch in conventional time domain processing with
constant or smooth NMO velocity models. A stretch free imaging with optimally recovered wavelet is not
possible with such models. We discussed an approximation of the stacking velocity variation along the
wavelet that is better suited for the simulation of ZO sections. A comparison with CRS stack results for a 1-D
model demonstrated that data-driven imaging methods automatically avoid the pulse stretch and introduce a
systematic variation of the stacking velocity. Formulated in terms of the kinematic CRS wavefield attributes,
this variation vanishes. Thus, the radii of wavefront curvatures involved in the CRS stack approach provide
a more appropriate parameterization of the reflection events.
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