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Preface

In September 1997 I completed my master thesis (Diplomarbeit) titled Herleitung und Im-
plementierung der Seismic-Image-Wave-Theorie und Anwendung auf reflexionsseismische
Meßdaten. As usual and quite obvious I wrote it in German, but meanwhile I had to realize
that this is more disadvantageous than I had expected. Considering the encouraging interest
in my thesis, I decided to translate it. I request the reader to ignore the linguistic mistakes I
made during the translation—you will still recognize the German style...
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Abstract

This thesis is concerned with the derivation, implementation and application of the seismic
image wave theory by Hubral et al. [HTS96]. In this theory, well-known imaging problems
are taken as wave propagation phenomena with appropriate propagation variables. The
theory is partly generalized to 3D in this thesis. The seismic image wave theory is based on
the method of discontinuities by Goldin [Gol90], [Gol89].

Based on straightforward geometrical approaches, image wave equations are derived for
four different imaging problems: post-stack remigration in the time domain, post-stack rem-
igration in the depth domain, migration to zero-offset (MZO, and dip moveout (DMO). The
latter two problems are self-explanatory and are also called configuration transforms by
Hubral et al. [HST96] and Tygel et al. [TSH96]. Post-stack remigration means transform-
ing images migrated with a (possibly wrong) velocity model to a new image corresponding
to another (updated) velocity model.

In the present thesis, the derivations are restricted to constant velocity models and the
kinematical aspects of the imaging problems. The basic idea is to chain migration and
demigration methods to obtain so-called Huygens image waves for the respective imaging
problem. This is closely related to the unified approach to 3D seismic reflection imaging
by Hubral et al. [HST96] and Tygel et al. [TSH96], where Kirchhoff-type operators are
introduced for the mentioned imaging problems.

Using the Huygens image waves, corresponding image wave eikonal equations are derived.
I propose four seismic image wave equations which can be shown to yield the mentioned
image wave eikonal equations by using ansatzes similar to the well-known zero-order ray
approximation. While the proposed MZO and DMO image wave equations are restricted
to 2D and were already presented by Hubral et al. [HTS96], the image wave equations for
the remigration problems are generalized to 3D.

The imaging problems may now be reformulated as initial value problems (IVP). In the
framework of this thesis, these IVP are solved by using semi-explicit finite difference (FD)
schemes. The FD schemes and some additional features are implemented and provide the
following range of possibilities:

� 2D and 3D remigration in the time and depth domain applied towards higher or
lower velocities.

� Normal moveout for constant velocity models.

� DMO and MZO for an arbitrary number of common-offset gathers.

� Stacking of DMO or MZO results.
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The FD schemes are applied to various synthetic and real data sets. Apart from the MZO,
which has not yet produced useful results, all imaging problems are successfully solved by
this implementation. In particular the remigration in the time domain and the DMO proved
very stable.

These methods allow one to see the seismic images propagating through the respective
domain when changing the respective propagation variable, i. e. offset or velocity. Thus
the sensitivity of the images to parameter changes may be observed. Please note that the
propagation takes place in fictitious domains and does not correspond to any physical
propagation processes. For obvious reasons, these methods are also called velocity and
offset continuation, resp.

With remigration, the best image can be selected out of a sequence of many by observing
the changes of significant structures in the images, like bow ties or diffraction patterns.
Structures of this kind are used to determine an optimum constant migration velocity, i. e. to
obtain information on the macro velocity model. Although derived for a constant velocity
model, remigration in the time domain also proves applicable to weakly inhomogeneous
models with certain restrictions, as is shown for the Marmousi 3D overthrust model.

As remigration in time domain accepts (simulated) zero-offset data associated with the
migration velocity v= 0, the implemented methods may be chained in order to obtain
time-migrated images from pre-stack data by subsequently using NMO, DMO, stack and
remigration in the time domain.
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Chapter 1

Introduction

The present thesis deals with the derivation, implementation and application of the seismic
image wave theory by Hubral et al. [HTS96]. Within the scope of this theory, we conceive
four well-known seismic imaging problems as generalized wave propagation phenomena.
The theory is based on the method of discontinuities by Goldin [Gol90], [Gol89].

This chapter embraces four sections: firstly, we introduce the imaging problems under con-
sideration. In the second section we discuss some properties of the physical wave propaga-
tion which will be transfered to the seismic imaging problems in the third section. Finally,
the last section describes the basic structure of this thesis.

First of all some definitions: emphasized parts of the text are printed inslant letters, the
names of programs and program packages insans serif, and names of hardware devices
are printed inSMALL CAPITALS. These definitions partly collide with the style parameters
for headings and page headers. Therefore, they, cannot be used in all situations. The abbre-
viations 1D, 2D and 3D should be read as adjectives (”two dimensional”) or as nouns with
number (”two dimensions”) depending on the respective context.

1.1 The imaging problems

In the present thesis we consider four different imaging problems: remigration in the time
domain, remigration in the depth domain, migration to zero-offset (MZO), and the dip
moveout (DMO) correction. The two remigration problems are applied to post-stack data,
the other imaging problems to pre-stack data.

The remigration in the time or depth domain enables us to transform an image migrated
with a (possibly wrong) velocity model to a new migrated image corresponding to another
(improved) velocity model. There is no need to access the original unmigrated data set for
this process, but only the already migrated image is required. It should be mentioned that
the migration velocityv = 0 is associated with the (simulated) zero-offset section in the

1



2 CHAPTER 1. INTRODUCTION

time domain.

Remigration is a generalization of the residual migration by Rothman et al. [RLR85] and
the cascaded migration by Larner et al. [LB87]. These methods are restricted to small
changes of the velocity model while the remigration is not restricted in this respect. The
2D equations proposed by Hubral et al. [HTS96] are generalized to 3D in this thesis.

A classical approach to simulate zero-offset sections is to chain a normal moveout (NMO)
correction and a DMO followed by a stacking of the simulated zero-offset sections. The
NMO corrects the influence of the offset for horizontal reflectors but yields wrong images
of dipping reflectors. The DMO subsequently considers the influence of the dip on the
traveltimes. The MZO, however, performs the same as chained NMO and DMO in one
single processing step.

In this context we understand a common-offset data set as a section recorded along a
straight acquisition line. Shots and receivers are always situated on the acquisition line,
MZO and DMO are pure 2D problems accordingly. Anyway, it is possible to simulate a 3D
zero-offset data set by applying MZO or DMO to several parallel lines successively.

Depending on the respective propagation variable we also designate the mentioned methods
velocity or offset continuation methods, respectively.

1.2 Physical wave propagation

This discussion is confined to the propagation of body waves in acoustic media. The propa-
gation of seismic energy in such media is described by a linear partial differential equation
of second order. Representing the wavefield by the pressurep(t;~x) at all locations~x at
the timet, the wave propagation can be simulated by solving the initial value problem
p0 = p(t = t0;~x)! p= p(t;~x).

A long time before the scalar wave equation was found, several simple principles were
already used to describe some aspects of the wave propagation phenomenon, namely the
Fermat's principle and the conceptions of elementary or Huygens waves, wavefronts, and
rays.

The conception of Huygens waves and wavefronts is of particular significance for the seis-
mic image wave theory. A wavefront represents a purely kinematical property of the wave-
field, namely the location of a discontinuity in the wavefield. An elementary or Huygens
wave is simply a wavefront emitted by a point source.

Using the Huygens waves, we can construct a wavefront at timet2 by taking each point on
a known wavefront fort1 as point source of a Huygens wave. The envelope of all Huygens
wavefronts after the timet2� t1 is the searched-for wavefront.

The Huygens wave can be derived from the scalar wave equation with a ray-theoretical
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Figure 1.1: a) Rays and wavefronts in a homogeneous acoustic medium, b) time-migrated
images of a point for different constant velocities. Some wavefronts are partly shown.

ansatz of zeroth order or an ansatz similar to equation (2.1): this yields the so-called eikonal
equation, a non-linear partial differential equation of first order. The solution of the eikonal
equation is the Huygens wave. Vice versa, the eikonal equation can be derived from the
Huygens wave. The eikonal is a parameterized representation of a wavefront for a fixed
time t.

1.3 Seismic image waves

The transition to seismic image waves may be illustrated with an example for one of the
four imaging problems under consideration: in fig. 1.1a we have snapshots of a wavefront
in a homogeneous acoustic medium for three different moments. For the sake of simplicity,
we consider a point source. In fig. 1.1b we have different time-migrated images of one and
the same point in a seismic section for three different constant velocities.

Now, we take the different images in fig. 1.1b as wavefronts of a propagation phenomenon.
The propagation variable is problem-specific, in this example it is the velocityv. This view
is sheerly abstract and not related to any physical propagation process. The figure also
includes the according image wave rays which, however, are not relevant for this thesis.

As already mentioned, wavefronts in an acoustic medium can be constructed by using the
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Huygens principle. Now, we transfer this method to the seismic imaging problems: each
point on the—in this particular case migrated—image for the velocityv1 in fig. 1.1b is
taken as a source point of a Huygens wave. The envelope of all Huygens waves after the
“time” v2�v1 is the wavefront, i. e. the searched-for image, for the velocityv2.

The same strategy can be applied to all the imaging problems mentioned above. For MZO
and DMO the respective propagation variable is obviously the offset. In the framework of
this thesis we only consider homogeneous1 isotropic media for the derivations.

We can calculate the Huygens waves for the imaging problems under consideration by a
chained application of migration and demigration (or vice versa). This procedure is iden-
tical with the unified approach to 3D seismic reflection imaging by Hubral et al. [HST96]
and Tygel et al. [TSH96]. The authors derived Kirchhoff-type operators for different seis-
mic imaging problems.

Introducing parameterized representations of the image wavefronts, the so-called eikonals,
we can derive the according eikonal equations from the Huygens waves.

For each imaging problem and its related eikonal equation we propose an image wave
equation. Using ansatzes similar to the zero-order ray approximation for physical waves in
acoustic media, these image wave equations yield the derived eikonal equations.

This ensures that at least the kinematical properties of the considered imaging problems can
be described by the proposed image wave equations. The imaging problems may now be
rewritten as initial value problems with—depending on the particular imaging problem—
the velocity or the offset as propagation variable, respectively.

We solve the initial value problems by means of semi-explicit finite difference (FD)
schemes. The implementations based on this approach are finally applied to various syn-
thetic and real data sets. The implementation of the DMO and MZO additionally includes
an NMO correction and the option to stack the simulated zero-offset sections.

1.4 Structure of the thesis

Starting with straightforward geometrical considerations, we calculate the Huygens waves
for the four imaging problems in chapter 2. Using the parameterized wavefronts, i. e. the
eikonals, the associated eikonal equations are derived. These eikonal equations describe the
kinematical aspects of the imaging problems. Finally, we propose image wave equations for
all imaging problems which also yield the derived eikonal equations if we insert appropriate
ansatzes. We compare the results with the well-known case of physical wave propagation.

Chapter 3 deals with the discretization and implementation of the image wave equations as
well as with the implementation of the NMO correction and the stacking procedure.

1I.e. homogeneous with respect to the velocity—the density may vary.
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The application of the remigration in the time and depth domain is extensively discussed in
chapter 4.

In chapter 5 we discuss the application of the NMO/DMO and the MZO to several synthetic
data sets.

Finally we conclude the results in chapter 6.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Seismic image wave theory

2.1 The scalar wave equation

The principle of seismic image wave methods is based on treating the imaging problems
with the same formalism like the scalar wave equation, although there is no physical prop-
agation process related to them.

This formalism includes the idea of wavefronts which can be taken as envelopes of ele-
mentary or Huygens waves, which, on the other hand, are solutions of the eikonal equation.
This eikonal equation, a non-linear partial differential equation of first order, describes the
kinematical aspects of the wave propagation. The entire wave field is described by the wave
equation, a linear partial differential equation of second order.

The scalar wave equation also describes the dynamical properties of the (physical) wave-
field, whereas the seismic image wave methods are restricted to the purely kinematical
properties of the image wave field in the framework of this thesis.

To emphasize the large analogy of physical wave propagation and seismic image waves,
we derive the eikonal equation from the scalar wave equation with the ansatz

p(~x; t) = p0(~x) f [t�T(~x)] : (2.1)

In this equation,t = T(~x) represents the propagating wavefront,p0(~x) the initial wavefield,
and f is an arbitrary smooth function. In media with constant density, the scalar or acoustic
wave equation in 3D reads

∇2p(~x; t) =
1
v2

∂2

∂t2 p(~x; t) ; (2.2)

with v as propagation velocity within the medium. After inserting the ansatz (2.1) into the
wave equation (2.2) we obtain

f 00p0

�
(∇T)2�

1
v2

�
� f 0

�
2∇p0 �∇T + p0∇2T

�
+ f ∇2p0 = 0: (2.3)

7
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To satisfy this equation for any arbitrary functionf , each of the terms withf 00, f 0 and f
must vanish separately. The resulting three equations

(∇T)2�
1
v2 = 0; (2.4)

2∇p0 �∇T + p0∇2T = 0 (2.5)

and
∇2p0 = 0 (2.6)

contain only two scalar functionsp0(~x) and T(~x). Therefore, the problem is over-
determined. In a high frequency approximation we can neglect the term withf , i. e. equa-
tion (2.6). The remaining equations are the so-called eikonal equation (2.4) and the so-
called transport equation (2.5).

Whereas the transport equation (2.5) depends on the entire wavefieldp0, the eikonal equa-
tion (2.4) contains no corresponding terms. Hence, it follows that the eikonal equation only
describes the kinematical properties of the propagations process, but not the amplitudes of
the wavefield.

In a homogeneous medium withv= constthe solution of the eikonal equation (2.4) reads

t = T(~x) = t0+
j~x�~x0j

v
: (2.7)

It describes the kinematical aspects of an elementary or Huygens wave with concentric
spherical wavefronts centered in the source point~x0.

The explained classical method starts with the well-known scalar wave equation (2.2), lead-
ing to the eikonal equation and the Huygens wave. In seismic image wave theory, however,
the respective image eikonal and image wave equations first have to be derived. That is why
we have to examine the reversibility of the method:

The eikonal equation (2.4) can be easily derived from the Huygens wave (2.7) by applying
the gradient operator:

∇T(~x) =
1
v
~x�~x0

j~x�~x0j
(2.8)

Squaring the equation (2.8), which describes the rays penetrating the wavefrontT(~x), im-
mediately yields the desired result.

2.2 Remigration in the depth Domain

To obtain the eikonal equation for the remigration in the depth domain, we proceed as fol-
lows: we demigrate each point(x0;y0;z0) on a reflectorΣ0 into the time domain with the
velocityv0. In the case of the simplest acquisition geometry, it is the zero-offset configura-
tion. The coincident shot and receiver pairs are situated in the acquisition planez= 0 and
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are given by the coordinates(ξ;η). For a homogeneous model we immediately obtain the
traveltime surface in the time domain, a hyperboloid reading

t(ξ;η) =
2
v0

q
(x0�ξ)2+(y0�η)2+z2

0 : (2.9)

The envelope of all traveltime surfaces for all reflector points(x0;y0;z0) is the zero-offset
traveltime surface corresponding to the reflectorΣ0.

Each pointM(ξ;η; t) on the hyperboloid (2.9) is now migrated back into the depth domain
with another velocityv 6= v0. The isochron for each of these points is a half-sphere with the
radiusvt=2 centered at(ξ;η;0):

t2 =
4
v2

h
(x�ξ)2+(y�η)2+z2

i
(2.10)

The entire family of isochrons for all points on the hyperboloid for a fixed point(x0;y0;z0)
is obtained by squaring equation (2.9) and subsequent equating with the isochron equation
(2.10). In this way we obtain an implicit function

F(x;y;z;ξ;η) = (x�ξ)2+(y�η)2+z2�
v2

v2
0

h
(x0�ξ)2+(y0�η)2+z2

0

i
= 0 (2.11)

parameterized by the point of acquisition(ξ;η). The envelope of this family of curves is
defined by the two conditions∂F=∂ξ = 0 and∂F=∂η = 0. With these conditions we can
calculate the parameter pairs(ξ;η) for whichF is stationary:

ξ =
1

1� v2

v2
0

�
x�

v2

v2
0

x0

�
(2.12)

η =
1

1� v2

v2
0

�
y�

v2

v2
0

y0

�
(2.13)

Inserting the equations (2.12) and (2.13) into the implicit formula of the family of isochrons
(2.11), we finally obtain the envelope of the family of isochrons (2.14). By analogy with
the Huygens waves for the scalar wave equation, we call this envelope the Huygens image
wave for depth remigration:

z=
v
v0

vuutz2
0+

(x�x0)
2+(y�y0)

2

1� v2

v2
0

(2.14)

The construction of the Huygens image wave for one fixed velocity is shown in fig. 2.1a.
The figure is reduced to 2D, because it would be quite confusing in 3D. Snapshots of the
Huygens image wave in 2D are shown in fig. 2.1b. Finally we show the construction of an
image wavefront for a reflector migrated with a (possibly wrong) velocityv0 in fig. 2.2.
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Construction of Huygens image wave for depth remigration
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Figure 2.1: a) Construction of the exploding Huygens wave for the remigration in the depth
domain, b) snapshots of the Huygens wave for different velocities.
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Construction of an image wavefront for depth remigration
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Figure 2.2: Construction of an image wavefront for the remigration in the depth domain.

To obtain an equation for the eikonalv = V(x;y;z), we insert it into the Huygens image
wave (2.14). A subsequent substitutionM(x;y;z) =V(x;y;z)=v0 simplifies the notation and
leads to

z= M(x;y;z)

s
z2
0+

(x�x0)
2+(y�y0)

2

1�M2(x;y;z)
: (2.15)

Now, we calculate the derivatives of equation (2.15) with respect tox, y andz. Squaring
and adding the two derivatives with respect tox andy yields

0 =

2
4
s

z2
0�

(x�x0)
2+(y�y0)

2

1�M2 +
M2
h
(x�x0)

2+(y�y0)
2
i

(1�M2)2
q

z2
0+

(x�x0)
2+(y�y0)

2

1�M2

3
5

2

�
�
M2

x +M2
y

�
�

M2
h
(x�x0)

2+(y�y0)
2
i

(1�M2)2
h
z2
0+

(x�x0)
2+(y�y0)

2

1�M2

i ; (2.16)

whereas the derivative with respect toz, divided byMz and squared, yields the following:

1
M2

z
=

2
4
s

z2
0�

(x�x0)
2+(y�y0)

2

1�M2 +
M2
h
(x�x0)

2+(y�y0)
2
i

(1�M2)2
q

z2
0+

(x�x0)
2+(y�y0)

2

1�M2

3
5

2

(2.17)
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Inserting (2.17) into (2.16) we obtain

0=

�
M2

x +M2
y

�
M2

z
�

M2
h
(x�x0)

2+(y�y0)
2
i

(1�M2)2
h
z2
0+

(x�x0)
2+(y�y0)

2

1�M2

i (2.18)

and finally we insert the equation (2.15), divided byM and squared:

z2

M4

M2
x +M2

y

M2
z

=
(x�x0)

2+(y�y0)
2

(1�M2)2 (2.19)

Inserting equation (2.19) into equation (2.17) and insertingz=M according to equation
(2.15) yields the eikonal equation forM(x;y;z)

M2
x +M2

y +M2
z�

MMz

z
= 0: (2.20)

After resubstitutingV(x;y;z)= v0M(x;y;z) into equation (2.20) we obtain the eikonal equa-
tion for V(x;y;z):

V2
x +V2

y +V2
z �

VVz

z
= (∇V)2�

V
z

∂V
∂z

= 0 (2.21)

Now, we use a vector notation to obtain a more compact representation of the image wave
equation and the proposed ansatz.

If we reduce the problem to two dimensions the derived eikonal equation (2.21) gets equiv-
alent to the equation derived by Hubral et. al [HTS96]1. On the analogy of the image wave
equation

∂2p
∂x2 +

∂2p
∂z2 +

v
z

∂2p
∂z∂v

= 0 (2.22)

for two dimensions proposed in the same paper, we propose a more general image wave
equation in 3D:

∇2p+
v
z

∂2p
∂z∂v

= 0 (2.23)

In the same way we used the ansatz (2.1) for the scalar wave equation, we now use the
ansatz

p(~x;v) = p0(~x) f [v�V(~x)] : (2.24)

In the following, we demonstrate that this ansatz also leads to the derived eikonal equation
(2.21). Inserting the ansatz (2.24) into the proposed image wave equation, we obtain

f 00p0

�
(∇V)2�

v
z

∂V
∂z

�
+ f 0

�
v
z

∂p0

∂z
�∇p0 �∇V� p0∇2V

�
+ f

�
∇2p0�∇p0 �∇V

�
= 0:

(2.25)
To be satisfied for any arbitrary functionf , the expressions withf , f 0 and f 00 must vanish
separately. In a high frequency approximation we only consider the first term of equation

1The cited paper contains a wrong sign in equation (A7): the third term should be positive, too.
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(2.25). If we substitute the eikonalV(x;y;z) for v we immediately obtain the eikonal equa-
tion (2.21) derived above.

According to this, the image wave equation (2.23) describes the kinematical properties of
the remigration in the depth domain. However, we cannot make any statement related to the
amplitudes of the wavefield. The remigration in the depth domain may now be rewritten as
initial value problem:

p(v= v0;~x)! p(v;~x) (2.26)

2.3 Remigration in the time domain

In the time domain we can apply the same strategy to derive the eikonal equation as in
the depth domain. Since we consider a homogeneous modelv= const, the straightforward
transformation �

x0;y0;
2z0

v0

�
! (x0;y0; t) (2.27)

from the depth to the time domain may be used. This enables us to refer to results already
derived in the depth domain. Starting point is the Huygens image wave (2.14) in the depth
domain. Transforming it into the time domain according to equation (2.27) we obtain

t =

vuut
t2
0 +

4
h
(x�x0)

2+(y�y0)
2
i

v2
0�v2

: (2.28)

In fig. 2.3a we depict snapshots of the Huygens image wave, whereas in fig. 2.3b the con-
struction of an image wavefront for a reflector migrated with a (possibly wrong) velocity is
shown. For the sake of clarity, the figures are again reduced to two dimensions.

We now derive the eikonal equation in exactly the same way as we already did for the
remigration in the depth domain in section 2.2: we substitute the eikonalV(x;y; t) for the
velocity v. Subsequently, we calculate the derivatives of the Huygens image wave (2.28)
with respect tox, y andt. The sum of the squared derivatives with respect tox andy is

0 =
�
V2

x +V2
y

� 16V2
h
(x�x0)

2+(y�y0)
2
i2

�
v2

0�V2
�4�

t2
0 +

4[(x�x0)
2+(y�y0)

2]
v2

0�V2

�

�
16
h
(x�x0)

2+(y�y0)
2
i

�
t2
0 +

4[(x�x0)
2+(y�y0)

2]
v2

0�V2

��
v2

0�V2
�2

; (2.29)
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Snapshots of Huygens image wave for time remigration

0.2 0.4 0.6 0.8
Distance [km]

0.40

0.30

0.20

0.10

0.00

T
im

e 
[s

]

P0
v = 2 km/s0

v 
= 

0.
0 

km
/s

v =
 0.

4 k
m

/s

v = 0.8 km
/s

v 
= 

1.
2 

km
/s

v 
= 

1.
6 

km
/s

v = 2.4 km
/s

v = 2.8 km
/s

v = 3.2 km
/s

v = 3.6 km
/s

v = 4.0 km
/s

a)

Construction of an image wavefront for time remigration

0.2 0.4 0.6 0.8
Distance [km]

0.50

0.40

0.30

0.20

0.10

0.00

T
im

e 
[s

]

v = 2 km/s
0

v = 2.5 km/s
wrongly migrated image
wrongly migrated points
Huygens image waves
Image wavefront

b)

Figure 2.3: a) Snapshots of a Huygens image wave in time domain for different velocities,
b) construction of an image wavefront for the remigration in the time domain.
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the derivative with respect tot, squared and divided byV2
t yields

1

V2
t
=

16V2
h
(x�x0)

2+(y�y0)
2
i2

�
v2

0�V2
�4�

t2
0 +

4[(x�x0)
2+(y�y0)

2]
v2

0�V2

� : (2.30)

Inserting the equations (2.30) and (2.28) into equation (2.29) leads to

V2
x +V2

y

V2
t

t2

4
= 4

(x�x0)
2+(y�y0)

2�
v2

0�V2
�2 : (2.31)

We insert this result (2.31) into the derivative with respect tot (2.30) and finally obtain the
eikonal equation

V
�
V2

x +V2
y

�
�4Vt =V

�
∇V
�2
�4

∂V
∂t

= 0: (2.32)

Now, we again change to vector notation to get a more compact representation. We define
∇ = (∂=∂x;∂=∂y).

As before for the remigration in the depth domain, the eikonal equation (2.32) gets equiva-
lent to the corresponding equation by Hubral et al. [HTS96] if we reduce it to two dimen-
sions. Following the image wave equation

vt
∂2p
∂x2 +4

∂2p
∂v∂t

= 0 (2.33)

proposed in the cited paper for two dimensions, we propose a more general equation in 3D:

vt∇2p+4
∂2p
∂v∂t

= 0 (2.34)

Inserting the ansatz

p(x;y; t;v) = p0(x;y; t) f
�
v�V(x;y; t)

�
(2.35)

analogous to equation (2.1) into the proposed image wave equation (2.34) we obtain

f 00p0

�
vt
�
∇V
�2

+4
∂V
∂t

�
+ f 0

�
4

∂p0

∂t
�2vt∇p0 �∇V�vt p0∇2V

�
+ f

�
vt∇2p0

�
= 0:

(2.36)
The expression in square brackets is equivalent to the eikonal equation (2.32) if we sub-
stitute the eikonalV for the velocityv. This indicates that the image wave equation (2.34)
describes the kinematical properties of the remigration in the time domain. The correspond-
ing initial value problem reads

p(v= v0;x;y; t)! p(v;x;y; t) : (2.37)
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2.4 Migration to zero-offset (MZO)

For the derivation of the Huygens image waves for the two remigration problems we started
with a point on a reflector in the initial data set. The resulting Huygens image waves em-
anate from this initial point and are, therefore, called exploding Huygens waves.

Now, we reverse this strategy for the migration to zero-offset: We consider the inverse
problem, i. e. the migration to common-offset (MCO) and derive the Huygens image wave.
This yields the exploding Huygens image wave for the inverse problem, which is equivalent
to the imploding Huygens image wave for the original problem.

The inverse problem, i. e. the MCO, does not start with a migrated image but with the
traveltimes. Therefore, we interchange the steps to derive the Huygens image wave: a point
P0(ξ0; t0) in the zero-offset data set gets migrated into the depth domain. We obtain half-
circles with radiusvt0=2 centered at(ξ0;0) as isochrons:

z=

r�vt0
2

�2
� (x�ξ0)

2 : (2.38)

Now, we demigrate each pointP(x;z) on the isochron (2.38) with the offseth. The common-
offset traveltime curve for a pointP(x;z) reads

t =
1
v

�q
z2+(x�ξ+h)2+

q
z2+(x�ξ�h)2

�
: (2.39)

We obtain the family of traveltime curves for all points on the isochron by inserting the
isochron equation into the traveltime curve (2.39):

t =
1
v

�q
Ψ2� (x�ξ0)

2+(x�ξ+h)2+

q
Ψ2� (x�ξ0)

2+(x�ξ�h)2
�

(2.40)

In this equation,Ψ = vt0=2 denotes the length of the zero-offset ray path. The envelope of
the family of traveltime curves (2.40) is defined by the condition∂t=∂x= 0. This leads to

ξ0�ξ+hq
Ψ2� (x�ξ0)

2+(x�ξ+h)2
+

ξ0�ξ�hq
Ψ2� (x�ξ0)

2+(x�ξ�h)2
= 0; (2.41)

subsequent solving forx yields

x=
ξ3

0�Ψ2ξ0+Ψ2ξ�2ξ2
0ξ�ξ0h2+ξ0ξ2

(ξ0�ξ�h)(ξ0�ξ+h)
= ξ0+Ψ2 ξ0�ξ

h2� (ξ0�ξ)2 : (2.42)

Inserting equation (2.42) into the family of traveltime curves, we finally obtain the explod-
ing Huygens image wave for the MCO problem. To avoid confusion, we firstly consider
the arguments of the square roots in the equation of the family of traveltime curves (2.40):

Θ� = Ψ2� (x�ξ0)
2+(x�ξ�h)2 (2.43)
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Substitutingx according to equation (2.42) we obtain

Θ� = Ψ2�

�
Ψ2 ξ0�ξ

h2� (ξ0�ξ)2

�2

+

�
ξ0�ξ�h+Ψ2 ξ0�ξ

h2� (ξ0�ξ)2

�2

= Ψ2�

�
Ψ2Φ

h2�Φ2

�2

+

�
Φ�h+

Ψ2Φ
h2�Φ2

�2

(2.44)

with Φ = ξ0� ξ. The family of traveltime curves (2.40), multiplied byv and squared now
reads

(vt)2 =
�p

Θ++
p

Θ�

�2
= Θ++Θ�+2

p
Θ+Θ�

= 2
h4+Ψ2h2�Φ4+Ψ2Φ2

h2�Φ2 +2
�
Ψ2�Φ2+h2�

= 4h2Ψ2+h2�Φ2

h2�Φ2 = 4h2
�

1+
Ψ2

h2�Φ2

�
: (2.45)

After resubstitutingΦ = ξ0�ξ we obtain the exploding Huygens image wave for the MCO
problem

t =
2h
v

s
1+

Ψ2

h2�Φ2 =
2h
v

s
1+

Ψ2

h2� (ξ0�ξ)2 (2.46)

which is equivalent to the imploding Huygens image wave for the MZO problem.

The construction of this Huygens image wave is shown in fig. 2.4a for one fixed offset
h, snapshots of the Huygens image wave are shown in fig. 2.4b. In fig. 2.5 we depict the
construction of an imploding MZO image wavefront (or exploding MCO wavefront, re-
spectively) for one offset.

Proceeding in the same way as we did for the remigration, we substitute the eikonalH(ξ; t)
for the offseth and take the partial derivatives with respect toξ andt. The derivative with
respect tot reads

1=
2Ht

v

s
1+

Ψ2

H2�Φ2 �
2Ψ2H2Ht

v
q

1+ Ψ2

H2�Φ2(H2�Φ2)2
: (2.47)

Under consideration ofΦξ =�1, we obtain the derivative with respect toξ

0=
2Hξ

v

s
1+

Ψ2

H2�Φ2 �
2Ψ2H2Hξ

v
q

1+ Ψ2

H2�Φ2 (H2�Φ2)2
�

2Ψ2HΦ

v
q

1+ Ψ2

H2�Φ2(H2�Φ2)2
:

(2.48)
Using h = H(ξ; t) and inserting the equationstv=2H =

p
1+Ψ2=(H2�Φ2) and

Ψ2=[(tv=2H)2� 1] = H2�Φ2 derived from equation (2.46) into the derivative with re-
spect tot (2.47), we obtain

1
Ht

=
t
H
�

4H3
h� tv

2H

�2
�1
i

v2t(H2�Φ2)
(2.49)
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Construction of MZO Huygens image wave
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Figure 2.4: a) Construction of the imploding Huygens image wave for the MZO problem,
b) snapshot of the Huygens image wave for different offsets.
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Construction of a MZO image wavefront
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Figure 2.5: Construction of an MCO image wavefront for one offset.

and this leads to

H2�Φ2 =
4HtH4

h�
tv
2H

�2
�1
i

v2t(Htt�H)
: (2.50)

The same procedure applied to the derivative with respect toξ (2.48) yields

Hξ =
4H3Φ

h�
tv
2H

�2
�1
i

t2v2(H2�Φ2)�4H4
h�

tv
2H

�2
�1
i : (2.51)

Inserting equation (2.50) into equation (2.51) leads to a simple expression forΦ

Φ =
HξH2

tHt�H
(2.52)

which we insert into the equation (2.50). Finally, we obtain the eikonal equation for the
MZO problem:

1= H2
ξ �

4H2
t

v2 +
tHt

H
+

4HHt

v2t
(2.53)

This eikonal equation is equivalent to the equation derived by Hubral et al. [HTS96]2. In
the same paper the image wave equation

ht

�
phh+

4
v2 ptt

�
+

�
t2+

4h2

v2

�
pht�ht pξξ = 0 (2.54)

2There is a factor 1/tB missing in equation (A28) of the cited paper
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was proposed. Finally, we will show that we obtain the eikonal equation (2.53) if we insert
an ansatz

p(ξ; t;h) = p0(ξ; t) f [h�H(ξ; t)] (2.55)

similar to equation (2.1):

0 = f 00p0

�
ht+

4ht
v2 H2

t �

�
t2+

4h2

v2

�
Ht�htH2

ξ

�

� f 0
�

8ht
v2 p0tHt +

4ht
v2 p0Htt�

�
t2+

4h2

v2

�
p0t �2ht p0ξHξ + p0Hξξ

�

+ f

�
4ht
v2 p0tt �ht p0ξξ

�
(2.56)

To satisfy equation (2.56) for any arbitrary functionf , each term has to vanish separately.
With h= H(ξ; t) the term with f 00 again leads to the derived eikonal equation (2.53). The
image wave equation (2.54) obviously describes the kinematical aspects of the MZO prob-
lem. We are now able to rewrite the MZO problem as initial value problem:

p(h= h0;ξ; t)! p(h;ξ; t) (2.57)

2.5 Dip moveout (DMO) correction

The MZO problem can be divided into two separate steps, i. e. the normal moveout (NMO)
correction and the DMO. The NMO eliminates the influence of the offset for horizontal,
non-dipping reflectors, whereas the DMO considers the dip of the reflectors.

To derive the eikonal equation for the DMO problem, we start with the exploding Huygens
image wave for the MCO problem (2.46). Applying the well-known NMO correction (see
e. g. Yilmaz [Yil87])

τ2 = t2�
4h2

v2 (2.58)

to it, we obtain the Huygens image wave for the DMO problem:

τ =
t0q

1� Φ2

h2

(2.59)

Snapshots of this imploding Huygens image wave are depicted in fig. 2.6a, the construction
of an image wavefront for the inverse DMO problem is shown in fig. 2.6b.

Under consideration of∂Φ=∂ξ =�1 we insert the eikonalh=H(ξ;τ) and obtain the deriv-
atives with respect toξ

0=�t0

�
1�

Φ2

H2

�� 3
2
 

Φ
H2

+
Φ2Hξ

H3

!
(2.60)
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Snapshots of DMO Huygens image wave
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Figure 2.6: a) Snapshots of the DMO Huygens image wave for different offsets, b) con-
struction of an image wavefront for the inverse DMO problem.
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and with respect toτ

1=
t0Φ2Hτ

H3

�
1�

Φ2

H2

�� 3
2

: (2.61)

The derivative with respect toξ (2.60) immediately leads to

1
Hξ

=�
Φ
H
: (2.62)

Using this equation (2.62) and the expressiont0= τ
p

1�Φ2=H2 derived from the Huygens
image wave (2.59) we obtain from the derivative with respect toτ (2.61)

HH2
ξ

�
1�

Φ2

H2

�
=�τHt ; (2.63)

and, by again inserting equation (2.62), the eikonal equation for the DMO problem:

�τHτ = HH2
ξ �H (2.64)

This eikonal equation is equivalent to the equation derived by Hubral et al. [HTS96]3.
Finally, we have to show that the image wave equation

hpξξ�hphh� τpht = 0 (2.65)

proposed in the cited paper leads to the derived eikonal equation if we use an ansatz

p(ξ;τ;h) = p(ξ;τ) f [h� H(ξ;τ)] (2.66)

similar to equation (2.1). With this ansatz we obtain

0= f 00p0

�
hH2

ξ �h+ τHt

�
� f 0

�
2hp0ξHξ +hp0Hξξ + τp0τ

�
+ f p0ξξ : (2.67)

For an arbitrary functionf this equations is only satisfied if the terms withf 00, f 0 and f
vanish separately. Usingh = H(ξ;τ) the term with f 00 again yields the eikonal equation
(2.64). Therefore, the image wave equation (2.65) describes the kinematical properties of
the DMO problem. The corresponding initial value problem reads

p(h= h0;ξ; t)! p(h;ξ; t) : (2.68)

3The equations (29) and (A31) in the cited paper are incorrect: the square root on the right hand side
should be in the denominator.



Chapter 3

Discretization and implementation

3.1 Remigration

3.1.1 Finite difference schemes

The finite difference (FD) schemes are derived from the image wave equations (2.23) and
(2.34) which we repeat below to avoid confusion. In the depth domain we have

∇2p(x;y;z;v)+
v
z

∂2

∂z∂v
p(x;y;z;v) = 0;

in the time domain

vt∇2p(x;y; t;v)+4
∂2

∂v∂t
p(x;y; t;v) = 0:

These equations can be simplified by means of substitutions. In the depth domain the sub-
stitutionρ = lnv yields

∇2p�(x;y;z;ρ)+
1
z

∂2

∂z∂ρ
p�(x;y;z;ρ) = 0; (3.1)

and withω = v2 we obtain for the time domain

t∇2p�(x;y; t;ω)+8
∂2

∂ω∂t
p�(x;y; t;ω) = 0: (3.2)

With this substitutions both equations no longer explicitly depend on the velocityv, the
propagation variables are the square or the logarithm of the velocity, respectively. These
equations may be used instead of the original image wave equations.

Considering the four image wave equations (2.23), (2.34), (3.1) and (3.2), we now approx-
imate the mixed derivatives by FD operators of first order according to equation (A.11),

23
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second derivatives by FD operators of second order according to equation (A.5). Alterna-
tively, we approximate second derivatives with respect tox andy by FD operators of fourth
order according to equation (A.10). The FD operators are derived in the appendix A.

We have to distinguish the 2D and 3D problem, second order and fourth order operators
as well as the time and depth domain. This leads to a total of 16 different FD schemes. To
obtain a compact representation of all the schemes, we use the following conventions:

� The coordinatesx, y andz are connected with the indicesj, k and i, the respective
fourth coordinatev, ω or ρ is connected with the indexl . We name the related inter-
vals of discretization∆x, ∆y, ∆z or ∆t, respectively, and∆v, ∆ω or ∆ρ, respectively.
We definex= j∆x+x0 etc.

� In the depth domain, we useΞ = ∆v=v in the case of ”normal” velocity andΞ = ∆ρ
in the case of logarithmic velocity.

� In the time domain, we useΛ = v ∆v in the case of ”normal” velocity andΛ = ∆ω=2
in the case of squared velocity.

� All expressions printed ingreenare to be omitted in the application to 2D data sets.
In this case the indexk has no meaning.

Using these conventions and solving forpl+1
i; j ;k we obtain the following four equations, which

describe the 16 implemented FD schemes for remigration problems:

Time domain, FD operators of max. second order:

pl+1
i; j ;k =

Λ t ∆t
4

"
pl

i; j�1;k�2pl
i; j ;k+ pl

i; j+1;k

∆x2 +
pl

i; j ;k�1�2pl
i; j ;k+ pl

i; j ;k+1

∆y2

#

+ pl+1
i+1; j ;k� pl

i+1; j ;k+ pl
i; j ;k (3.3)

Time domain, FD operators of max. fourth order:

pl+1
i; j ;k =

Λ t ∆t
48
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Depth domain, FD operators of max. second order:
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Depth domain, FD operators of max. fourth order:

pl+1
i; j ;k = Ξz∆z

2
416

�
pl

i; j�1;k+ pl
i; j+1;k

�
� pl

i; j�2;k� pl
i; j+2;k�30pl

i; j ;k

12∆x2

+
16
�

pl
i; j ;k�1+ pl

i; j ;k+1

�
� pl

i; j ;k�2� pl
i; j ;k+2�30pl

i; j ;k

12∆y2

+
pl

i+1; j ;k�2pl
i; j ;k+ pl

i�1; j ;k

∆z2

#
+ pl+1

i+1; j ;k� pl
i+1; j ;k+ pl

i; j ;k (3.6)

Equation (3.3) was firstly introduced for two dimensions and squared velocity by Jaya et
al. [JSH96]1. For ”normal” velocity and in three dimensions it was introduced by Mann et
al. [MJ97a].

Considering the FD schemes (3.3) – (3.6), we always find an expressionpl+1
i+1; j ;k on the

right hand side. As the indexl is related to the propagation variable, we are not able to
determine the sectionpl+1 entirely from the preceding sectionpl . That is why we call the
FD schemes semi-explicit.

3.1.2 Implementation

In the beginning we intended to extend an existing program by Makky S. Jaya. However,
numerous extensions and generalizations finally led to a completely new implementation
of the remigration in the depth and time domain.

Whereas the FD schemes (3.3) – (3.6) are easy to implement without further ado, we have
to consider the treatment of the edges of the computational space as well as the definition
of the I/O formats and the parameter handling. Furthermore, the working direction for the
calculation of the sectionpl has to be determined. In the following we will discuss each of
these items:

At the edges of the in general four-dimensional computational space we get in trouble
with the boundary values because some of the values needed to calculate the FD operators
are missing. We implemented two alternative solutions for this problem, an approximative
solution and an exact solution:

For the approximative solution we proceed as follows: according to equation (A.10) five
values are required to calculate the FD operators of fourth order. If not all five values are

1Equation (5) in the cited paper is obviously incorrect: there is a factor 2 missing in the denominator on
the right hand side.
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available, we apply FD operators of second order requiring only three values. One of these
three values may still be missing. In this case we replace it by the value of its nearest
neighbour. This artificial boundary condition is also called zero-slope condition and takes
effect at the edges of the computational space for one or more of the FD operators. This
method causes no considerable distortion in the numerical experiments.

The exact solution avoids this problems in the most straightforward way be successively
shrinking the computational space in all directions. After each calculation steppl ! pl+1

we shrink the computational space in such a manner that all required values outside the
shrunken space are available. Obviously, this method is only useful for a sufficiently big
initial data volume, otherwise the target zone under investigation will be situated outside
the remaining computational space. To obtain sections with an uniform geometry, regions
outside the shrunken computational space are padded with zeros.

At the edges of the computational space values are also missing due to the fact that the
FD schemes are semi-explicit. We tried to apply the mentioned zero-slope condition in
this context, i. e. to replace the missing values in the sectionpl+1 by the corresponding
values in sectionpl (nearest neighbours inv-direction). Depending on the working direc-
tion (see below), these are the values ofpl+1

imax; j ;k
or pl+1

0; j ;k, respectively. Actually, we apply
this condition only to the first velocity step. For the next steps, the condition—as well as
some attempts to interpolate the missing values from their neighbours—leads to an unstable
process. Presently, we have no satisfactory solution for this particular problem but simply
keep the initial values. This may cause artifacts for the remigration in the depth domain.
In the time domain, however, we obtain no artifacts due to this problem in the numerical
experiments.

For parameter handling and data I/O we use libraries of theSEPlib package (Stanford
Exploration Project). This enables us to implement the remigration in an almost hardware-
independent way. Furthermore, the implementation can be used in connection with other
SEPlib programs.

The working direction inside the computational space is of great importance for the stability
of the FD method. Advancing to higher velocities, we have to start with the highest values
of t or z, respectively, and vice versa. In the latter case the FD schemes (3.3) – (3.6) are
solved forpl+1

i; j ;k.

The first implementation was written inRatfor, but due to considerable problems with the
pseudo-dynamical memory allocation it was rewritten inFortran90. The new version is
more compact and the code runs faster.

Essential features of the program:

� The input data set is an image in the time or depth domain migrated with a velocity
v0. In time domain it may also be a zero-offset section or a corresponding simulation
(e. g. a CMP stack) related to the velocityv0 = 0.

� The output data set has the geometry of the input data set plus the velocity as addi-
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tional dimension. An arbitrary number of velocity steps may be chosen independently
for the actual calculation and the output.2

� The propagation variable may be chosen as ”normal” velocity, squared velocity (time
domain), or logarithmic velocity (depth domain).

� We can define an arbitrary target zone within the initial data set.

� Partial derivatives with respect tox andy can be approximated by FD operators of
either second or fourth order.3

3.2 Normal moveout (NMO), DMO and MZO

3.2.1 Finite difference schemes

The derivation of the FD schemes is directly based on the derived image wave equations
for the MZO (2.54) and DMO (2.65) problems. For the MZO problem we have

ht

�
phh+

4
v2 ptt

�
+

�
t2+

4h2

v2

�
pht�ht pξξ = 0

and for the DMO problem
hpξξ�hphh� τpht = 0:

Once again we approximate the mixed derivatives by FD operators according to equation
(A.11). Second order derivatives with respect toh andt are approximated by FD operators
of second order according to equation (A.5), second derivatives with respect toξ by FD
operators of fourth order according to equation (A.10).

We use the following conventions for the FD schemes:

� The coordinatesξ andt or τ, respectively, are connected with the indicesj andi, the
coordinateh is connected with the indexl . We name the corresponding discretization
intervals∆ξ and∆t or ∆τ, respectively, definingξ = j∆ξ+ξ0 etc.

� For the MZO problem we abbreviate:

ϒ = t2+

�
2h
v

�2

(3.7)

2Restriction: for the remigration towards smaller velocitiesv> 0 (depth domain) orv� 0 (time domain),
respectively, must be satisfied.

3The newFortran90 implementation always uses FD operators of fourth order.
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Using all substitutions and conventions, we solve forpl+1
i; j and obtain the following two FD

schemes:

Migration to zero-offset:
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Dip moveout correction:
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(3.9)

Similar to the FD schemes for remigration in section 3.1.1, the FD schemes (3.8) and (3.9)
are semi-explicit: we have the termpl+1

i+1; j on the right hand side in both cases. The section

pl+1 is not entirely determined by the preceding sectionpl .

3.2.2 Implementation of the NMO correction

Although the NMO correction is not part of the DMO problem, it is included in the imple-
mentation. This enables us to compare the results of the MZO and the NMO/DMO without
using any additional software.

Another reason to include the NMO is the fact that most of the available NMO programs
expect common-shot gathers. With the included NMO there is no need to transform the
data sets from the common-shot to the common-offset configuration.

To apply the mentioned NMO correction (2.58)

τ2 = t2�
4h2

v2

we proceed as follows:

We preserve the geometry of the initial, not yet NMO corrected data set, i. e. the ranges of
the corrected traveltimeτ and the uncorrected traveltimet are the same. Firstly we calculate
the subrange forτ for which data are available. Then, we determine the traveltimeti for
each sampleτi in this subrange of theτ-domain. We perform a linear interpolation of the
two samples aroundti and assign the result to the corrected traveltimeτi . Areas without
available data are padded with zeros.
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Furthermore, we implemented two additional features:

The NMO correction causes a pulse stretch along the traces. The larger the offseth and the
smaller the traveltimesτ, the larger the pulse stretch. This pulse stretch debases the result
of a subsequent stacking procedure. Therefore, we implemented a routine to mute areas
with a too large pulse stretch.

Providing the length of the wavelettw in the initial data set, we calculate the uncorrected
travel timeti for each corrected traveltimeτi by means of equation (2.58). Afterwards, we
computeti + tw and the corresponding corrected traveltimeτ�(ti + tw). To confine the pulse
stretch to a maximum of 25%, we mute all samples satisfying(τ�� τi)=tw > 1:25.

With increasing offset the raypaths and the traveltime proportional to them (rememberv=
const) also increase. The difference between zero-offset and common-offset raypath causes
an additional loss of amplitude called geometrical spreading. This effect can be easily set
off by multiplying each sample by

p
ti=τi (line source in 2D) orti=τi (point source in

3D), respectively. This so-called geometrical spreading correction is singular forτ ! 0.
Therefore, we confine it to an explicitly given maximum. Using the muting routine and
geometrical spreading correction together will, however, never yield any singularities at
all.

3.2.3 Implementation of the DMO and MZO

The situation is quite the same as for the remigration problems in section 3.1.2. Almost all
statements made there also apply to the DMO and MZO problems. Once again we apply the
zero-slope condition at the edges of the in this case three-dimensional computational space.
For the first offset step we set the initial conditionp0 � p1, i. e. we apply the zero-slope
condition to the offset-direction, too. A successive shrinking of the computational space as
implemented for the remigration is not included.

The remigration is implemented towards higher as well as lower velocities, whereas the
DMO and MZO is implemented for a propagation towards smaller offsets only. We define
the offset interval∆h in such a manner that we obtain the desired number of offset steps
for the largest offset in the initial data set. For smaller offsetshi commensurate fewer offset
steps are computed with the same offset interval∆h. To preserve an uniform geometry for
output, we pad with zeros forhmax� h> hi if necessary. This enables us to perform the
stacking of the results easily. The propagation always terminates ath� 0.

The working direction is clearly determined by the direction of propagation∆h < 0: the
FD schemes are stable only if we proceed from higher towards lower traveltimest or τ,
respectively. The sign of∆h also defines which values have to be provided again in each
offset step due to the semi-explicit properties of the FD schemes (3.8) and (3.9): the values
pl+1

imax; j cannot be computed from the preceding section. In the present implementation these

values are once set top0
imax; j and remain unchanged during the propagation process.
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CO section, uncorrected CO section, NMO corrected

MZO NMO
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Output (stacked) snapshots (stacked) zero-offset sections

Figure 3.1: Possible applications of the NMO/DMO/MZO program.

The approximations mentioned above do not exercise an significant influence on the re-
sults of the numerical experiments. Whereas the DMO correction proved very stable, the
unmodified MZO process fails: the MZO process is unstable with all parameter sets we
considered so far. We obtain highest frequency artifacts with quickly increasing amplitudes
covering any useful information. To force the MZO process to be stable, we propose an ad-
ditional smoothing operator to be applied after each offset step. The operator is explained
in appendix B. Its influence on the stability of the process and the resulting traveltimes is
discussed in section 5.2.

The NMO/DMO/MZO implementation is written inFortran90. As for the remigration we
use programs of theSEPlib package to perform the data I/O and the parameter handling.
The individual processes NMO, DMO and MZO may be applied separately or combined
(NMO/DMO). The possible applications are depicted in fig. 3.1. As we implemented sev-
eral ways of stacking, the program supports various I/O formats:

� Input:

– an arbitrary number of uncorrected common-offset gathersp(t;ξ)

– an arbitrary number of NMO-corrected common-offset gathersp(τ;ξ)

� Output:

– NMO-corrected common-offset gathersp(τ;ξ)

– Pre-stack snapshots of the MZO processp(t;ξ;h;h0). Here and in the following,
h denotes the propagation variable in offset direction, whereash0 denotes the
offset of the initial common-offset section.

– Post-stack snapshots of the MZO processp(t;ξ;h) stacked for identical offsets
h.

– Pre-stack zero-offset sectionsp(t;ξ;h= 0;h0)
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– Post-stack zero-offset sectionp(t;ξ;h= 0)

– Pre-stack snapshots of the DMO processp(τ;ξ;h;h0)

– Post-stack snapshots of the DMO processp(τ;ξ;h)
– Pre-stack zero-offset sectionsp(τ;ξ;h= 0;h0)

– Post-stack zero-offset sectionp(τ;ξ;h= 0)

Additional features of the program:

� We preserve the geometry of the initial data set. Depending on the chosen output
format, we obtain an additional offset dimension with an user-defined number of
offset steps. The number of offset steps for the actual calculation may be chosen
independently.

� The NMO correction includes a geometrical spreading correction for a line or point
source, respectively. The correction is limited to an explicitly given maximum.

� Areas with a pulse stretch larger than 25% can be muted during the NMO process.
This requires the length of the wavelet.

� The stability of the MZO process is controlled by means of a smoothing parameter.
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Chapter 4

Application of the remigration

4.1 Synthetic 2D data set

For testing purposes and to compare the remigration results with various migration meth-
ods, we define a 2D model satisfying the constant velocity assumption made during the
derivation of the image wave equations: the model shown in fig. 4.1 consists of five layers
with different densities but the same propagation velocity. We tried to chose a geologically
reasonable model.

By means of exploding reflector modeling we simulate a zero-offset data set for this model.
The result is shown in fig. 4.2a. The data set has a sampling rate of 1.3 ms and includes 120
traces with 50 m spacing. The mean frequency of the chosen wavelet is 30 Hz. The model
and the related zero-offset data set was already used by Jaya et al. [JSH96]. Therefore, we
are immediately able to compare the results of the original implementation and the one
proposed in this thesis.

Not all reflectors are well illuminated due to the chosen zero-offset configuration, in par-
ticular strong dipping reflector segments are affected. As there is no information about
non-illuminated reflector segments in the data set, they cannot be imaged by any imaging
method at all.

In the following, we apply the remigration in the time and depth domain to this data set. In
the time domain we can immediately use the zero-offset data set, in depth domain, however,
we first have to generate a (conventionally) depth-migrated image.

4.1.1 Remigration in the time domain

We remigrate the synthetic data set in the time domain with 2000 velocity steps fromv =
0 km/s tov = 6 km/s using “normal” velocity and FD operators of max. fourth order.

33
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2D constant velocity model

Distance [km] 

D
ep

th
  [

km
]

2 4
0

1

2

3

4

0

v = 5 km/s

Figure 4.1: Two dimensional model with density contrasts andv= 5 km/s.

Comparing this result with the results calculated with FD operators of max. second order
and/or squared velocity yields no significant differences and will not be discussed further.
Only the stability of the process is slightly higher with squared velocity, i. e. we can use
somewhat larger propagation steps∆ω.

The last section of the mentioned remigration result1, i. e. the result forv= 6 km/s, is taken
as time-migrated image. We remigrate this image in a second process fromv = 6 km/s
down tov= 0 km/s using the same parameters as in the first process, merely the sign of∆v
and the initial velocityv0 are changed accordingly.

Now, we discuss the properties of the two remigration results:

First of all we consider the intrinsic consistency of the remigration method. For that purpose
we extract the section related tov = 0 km/s from the second remigration result, i. e. the
one calculated towards smaller velocities. This so-called pseudo zero-offset section should
be—at least kinematically—equivalent to the initial zero-offset section. Both sections are
shown in fig. 4.2. Leaving artifacts due to grid dispersion and influences of the edges out
of account, the two sections are indeed equivalent.

Now, we extract the section for the true model velocityv= 5 km/s from the first remigration
result (∆v> 0) and compare it with the results of several migration methods. In fig. 4.3 we
have the results of the remigration, of a phase shift migration, of a migration in thet-k-
domain, and finally of a Kirchhoff migration in the time domain for the model velocity
v= 5 km/s. With respect to the kinematical properties the results are essentially equivalent.

1We omit the first and the last trace as well as the first and last time sample. This reduces the influences
of artifacts at the edges.
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Figure 4.2: Synthetic 2D data set: a) zero-offset section, b) pseudo zero-offset section gen-
erated by remigrating twice.

Each method causes some specific artifacts: e. g. we get strong dispersion effects with the
remigration in the vicinity of steep flanks, whereas the two migration methods working with
discrete Fourier transformations (phase shift migration and migration in thet-k-domain)
generate aliasing effects.

Finally, we show snapshots of the remigration process with∆v > 0 in fig. 4.4. With this
representation we can observe the continuous changes, i. e. the propagation of the imaged
reflectors with increasing velocity.

Of particular interest are the triplications mainly caused by the first reflector. These tripli-
cations vanish with increasing velocity. Disregarding the non-illuminated areas, we obtain
continuous and correctly located images of the reflectors for the the true model velocity.
For velocities higher than the true model velocity we observe hyperbolas well-known as
smiles indicating a too high migration velocity.

Diffraction patterns and triplications turn out to be good indicators for the quality of the
generated image. By observing such structures in the remigrated sections we can estimate
an optimum constant migration velocity: for the true model velocity triplications should
vanish and diffraction patterns should collapse to points. Obviously, the latter effect will not
occur exactly in the numerical experiment, but actually the diffraction hyperbolas shrink to
small flat objects.

The frequency content of the time-remigrated sections does not significantly depend on
the instantaneous remigration velocity. As we will see for the remigration in the depth
domain later on, this appears to be the crucial point for the stability of the remigration in
the time domain towardsbothpossible directions of propagation. According to fig. 4.2 the
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Figure 4.3: Synthetic 2D data set: results forv = 5 km/s computed by a) remigration in
the time domain, b) phase shift migration, c) migration in thet-k-domain, d) Kirchhoff
migration in the time domain.



4.1. SYNTHETIC 2D DATA SET 37

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=.48 km/s a)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=.96 km/s b)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=1.44 km/s c)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=1.92 km/s d)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=2.40 km/s e)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=2.88 km/s f)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=3.36 km/s g)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=3.84 km/s h)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=4.32 km/s i)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=4.80 km/s j)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=5.28 km/s k)

0

0.5

1.0

T
im

e 
[s

]

0 2 4
Distance [km]

Time remigration v=5.76 km/s l)

Figure 4.4: Synthetic 2D data set: time-remigrated sections forv= a) 480, b) 960, c) 1440,
d) 1920, e) 2400, f) 2880, g) 3360, h) 3840, i) 4320, j) 4800, k) 5280 and l) 5760 m/s.
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remigration is obviously stable in both cases.

Finally, we will compare the computational costs: computing one of the (conventional)
migration results in fig. 4.3 takes about the same processing time as the calculation of the
2000 remigration steps. For the discussed data set 25 of this steps are saved to disk, 12 of
them are shown in fig. 4.4.

4.1.2 Remigration in the depth domain

We applied a phase shift migration with the wrong velocityv = 4 km/s to the zero-offset
section shown in fig. 4.2a. The result is transformed from the time to the depth domain
according to equation (2.27). Besides, we cut off some numerical artifacts at the lower
edge of the migrated image.

As previously mentioned in section 3.1.2 the semi-explicit properties of the FD schemes
(3.3) – (3.6) cause problems at the—depending on the direction of propagation—upper
or lower edge of the computational space, respectively. In the depth domain we expect a
mainly vertical propagation of the images so that images may propagate to the crucial upper
or lower edge of the computational space, respectively. This causes considerable artifacts
which, however, vanish again in the advancing process and do not significantly change the
stability.

To avoid such artifacts, we padded the depth-migrated image with zeros in such a manner
that the computational space is large enough to include all events for all velocities under
consideration.

The depth-migrated image prepared in the discussed way is shown in fig. 4.5a. We applied
a remigration in the depth domain in 2000 velocity steps fromv = 4 km/s tov = 6 km/s
using ”normal” velocity and FD operators of max. fourth order2. The resulting section for
the true model velocity is shown in fig. 4.5b, further snapshots of the remigration process
are shown in fig. 4.6.

By means of the underlying model in fig. 4.5b we can easily observe that the illuminated
segments of the reflectors are correctly imaged with respect to their kinematical properties.
As for the remigration in the time domain we obtain artifacts due to grid dispersion in the
vicinity of steep flanks.

Having a close look at the snapshots in fig. 4.6 we observe that the wavelet is stretched with
increasing velocity. This well-known pulse stretch also occurs for conventional migration
methods and strongly controls the stability of the proposed FD methods: if we apply a
remigration in the depth domain towards lower velocities, the frequency of the wavelet
as well as of the unavoidable noise in the data set increases. As the highest representable
frequency is given by the discretization intervals this normally leads to the instability of

2As for the remigration in the time domain we get no significant differences if we use FD operators of
max. second order and/or—in this case—logarithmic velocity.
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Figure 4.5: Synthetic 2D data set: a) result of a phase shift migration withv = 4 km/s,
transformed to the depth domain, b) result of the remigration in the depth domain forv= 5
km/s with underlying model.

the process. According to the numerical experiments high frequency noise soon covers
any useful information: the amplitudes quickly increase, the sign changes from sample to
sample. This happens when the velocity decreases more than max. about 10%.

If the initial data set already contains some noise or high frequency artifacts, the remigration
towards lower velocities totally fails. In fig. 4.7 we have an example for the instability:
remigration is applied to the result of a phase shift migration withv= 5:2 km/s. We perform
400 velocity steps spaced 0.125 m/s and obtain only noise after a few calculation steps.

The required processing time is about the same as for the remigration in the time domain.
Criteria for the image quality are once again vanishing triplications, collapsing diffraction
hyperbolas and the continuity of the imaged reflectors.

4.2 Marmousi 3D overthrust model

In section 4.1 we used a synthetic data set which exactly satisfies the assumed homogeneous
model. Now we explore what happens if we apply the remigration to inhomogeneous mod-
els using synthetic but very complex data sets generated for the Marmousi 3D overthrust
model. This model shown in fig. 4.8 was developed at the Institut Franc¸ais du Pétrole and
at the Netherlands Institute of Applied Geoscience TNO by means ofGOCAD.

The model includes considerable vertical and lateral inhomogeneities. The velocity varies
between 2.2 and 6 km/s. The assumption of homogeneity is considerably offended.
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Figure 4.6: Synthetic 2D data set: depth-remigrated section forv = a) 4240, b) 4400, c)
4560, d) 4720, e) 4880, f) 5040, g) 5200, h) 5360, i) 5520, j) 5680, k) 5840 and l) 6000
m/s.
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Figure 4.7: Synthetic 2D data set: a) detail of a phase shift migration result forv = 5:2
km/s, transformed to depth domain. Details of depth-remigrated sections for b) 5:18 and c)
5:16 km/s.

For the Marmousi 3D overthrust model a data set with a non-regular arrangement of zero-
offset and near-offset traces is available. All traces consist of 350 samples with a sampling
rate of 8 ms. As the remigration programme expects the data on a regular grid we have to
prepare the data set accordingly:

In a first step we eliminated all near-offset traces. To get an idea of the geometry of the
remaining zero-offset traces we depict their locations in fig. 4.9. Obviously, there are three
regions for which we can extract data sets with regular geometries:

� A profile line oriented from east to west with 312 traces spaced 50 m. We call this
data set the 2D data set.3

� A 3D data set with 18 profile lines oriented from east to west in a distance of 600 m.
Each line contains 151 traces spaced 100 m. We call this data set the asymmetric 3D
data set.

� A 3D data set with 11 profile lines oriented from east to west in a distance of 100 m.
Each line contains 101 traces spaced 100 m. This data set is called the symmetric 3D
data set.

Although it is a synthetic data set some traces are missing in the three chosen data subsets.
Furthermore, some of the traces turn out to be useless. We replace these useless and missing
traces by zero traces. In a next step we replace the empty traces by neighbouring traces or—
if possible—by linear interpolations of the neighbouring traces. In this way finally all three
data subsets are entirely filled with usable traces.

We apply the remigration in the time domain to the three extracted data subsets. A preced-
ing (conventional) migration is not necessary in this case. As migrated images in the depth

3This data set was computed for the 3D model and is therefore not equivalent to a data set which we would
obtain for the 2D model in fig. 4.8b.



42 CHAPTER 4. APPLICATION OF THE REMIGRATION

5.54.9

Marmousi 3D overthrust model

6.0
velocity [km/s]

4.43.83.32.72.2

a)

5.54.9

Marmousi 3D overthrust model

4.4 6.0
velocity [km/s]

2.2 2.7 3.3 3.8

b)

Figure 4.8: Marmousi 3D overthrust model: a) total view and b) slice corresponding to the
used 2D data set.
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Figure 4.9: Marmousi 3D overthrust model: locations of the zero-offset traces.

domain are much more sensitive to changes in the velocity model than in the time domain
there is no point to apply a remigration in the depth domain.

4.2.1 2D data set

We remigrate this comparatively highly resolved data set in the time domain with “normal”
velocity and FD operators of max. fourth order in 6000 steps spaced 1 m/s. This covers all
velocities found in the model. The zero-offset data set is shown in fig. 4.10, some snapshots
of the remigration process are shown in fig. 4.11.

We can distinguish three regions in the data set showing different behaviours during the
remigration process:

� In regions with mainly horizontal reflectors nothing changes at all. That is exactly
what we would also expect for a conventional migration in the time domain.

� Dipping events at traveltimes greater than approx. 0.5 s vanish with increasing ve-
locity. The overburden is obviously too complex and inhomogeneous to satisfy the
assumed homogeneous model. In this case the FD methods does not yield any useful
image but indicates that the assumed homogeneity is offended too much.
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Figure 4.10: Marmousi 2D data set: zero-offset section.

� In the near surface region below approx. 0.5 s we obtain plausible images of the re-
flectors. By means of the triplications at approx. (0.46 s, 7.6 km) we can estimate the
optimum constant migration velocity: we obtain continuous images of the (former)
triplications and of the neighbouring structures forv� 2:9� 3:3 km/s. The model
velocity varies between 3.2 and 3.7 km/s in this region.

Hence, the remigration in the time domain still yields plausible and interpretable results for
weakly inhomogeneous media, although it was derived for constant velocities. A too strong
inhomogeneity of the model is indicated by the vanishing of dipping reflectors.

4.2.2 Asymmetric 3D data set

This data set is no 3D data set in a strict sense. As we can see in fig. 4.9 we have a distance
of 600 m between the lines. Lines are too far apart to get any useful information in cross-
line direction.

Therefore, we try to interpolate three additional lines between neighbouring lines to ob-
tain a configuration geometry of 100�150 m2. The coherency of the events in cross-line
direction turns out to be so small at various regions of the data set that we fail to gener-
ate continuous images by linear interpolation as well as by bicubic spline interpolation.
Another attempt to perform the interpolation in the frequency domain also fails.

After all we apply the remigration in the time domain to the original zero-offset data set
without additional interpolated lines. A view of this data set is shown in fig. 4.12a4. We can

4There seems to be no straightforward way to generate physically significant axes with the software we
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Figure 4.11: Marmousi 2D data set: time-remigrated sections forv= a) 240, b) 480, c) 720,
d) 960, e) 1200, f) 1440, g) 1680, h) 1920, i) 2160, j) 2400, k) 2640 and l) 2880 m/s.
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Figure 4.12: Marmousi 3D overthrust model: a) a view of the asymmetric 3D zero-offset
data set, b) a view of the snapshot forv = 2:4 km/s of the remigration result in the time
domain.
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hardly see any detailed structures like triplications due to the low resolution of the data set,
in particular in cross-line direction.

This zero-offset data set is remigrated in the time domain in 1000 steps spaced 6 m/s with
“normal” velocity and FD operators of max. fourth order. The four-dimensional result can
hardly be represented on 2D paper. Consequently, only one view of a single snapshot of
the remigration process is shown as an example in fig. 4.12b. The complete result has to
be interpreted interactively on the screen. Therefore, we have no choice but to describe the
result in a few sentences:

If we consider the 3D subsets of the 4D remigration results related to the different lines, we
obtain nearly the same results which we would obtain for 2D remigrations applied to each
line separately. The very small influence of the neighbouring lines is obviously due to the
large distance between the lines.

In this particular case, we can take the 4D result of the 3D remigration as an ensemble of
many 3D results of separate 2D remigrations. The application of the 3D FD schemes is just
a waste of processing time under these conditions. As was to be expected we observe the
same changes of the imaged reflectors as for the previously discussed 2D data set: again
we obtain plausible results in the near surface region, whereas dipping events at higher
traveltimes vanish with increasing velocity.

4.2.3 Symmetric 3D data set

In contrast to the asymmetric 3D data set we have the same distances between the traces in
cross-line and in-line direction. Hence, the symmetric 3D data set is a “real” 3D data set.

Remigration in the time domain is applied in 1000 velocity steps spaced 6 m/s to the zero-
offset data set shown in fig. 4.13a with ”normal” velocity and FD operators of max. fourth
order. As already mentioned in section 4.2.2 it is hardly possible to print the complete
result. We only show one view of a single snapshot of the remigration process in fig. 4.13b.

By interactive interpretation of the result we can observe the same changes we already
discussed in section 4.2.2. Unlike for the asymmetric 3D data set the profile lines are no
longer independent of each other for this data set: the result of the 3D remigration is no
longer equivalent to an ensemble of independent 2D remigration results for each single line.
As the Marmousi model mainly varies in the in-line direction the influence of neighbouring
lines is anyway small compared to the influence of traces in the same line.

use for the 3D plots, that is why we omit the axes completely.
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Figure 4.13: Marmousi 3D overthrust model: a) a view of the symmetric 3D zero-offset
data set, b) a view of a snapshot of the remigration process in the time domain forv= 2:4
km/s.
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4.3 Culmitzsch A profile 1560 data set

4.3.1 Acquisition

This hydro-acoustic data set was acquired and provided by DMT GeoTec in Bochum, Ger-
many. The data set was measured on the mine tailings pond Culmitzsch A of the Wismut
GmbH near Seelingst¨adt in Thüringen, Germany. The mine tailings pond is located in a
former surface mine which was filled up with mud from the extraction of uranium. More
details related to the development of this and of similar old contaminations can be found
in Beleites [Bel90] and Paul [Pau91]. A similar data set recorded at the same location was
discussed by Schott et al. [SMBN95].

The field equipment shown in fig. 4.14 was moved along the partly crooked line shown
in fig. 4.15. The source was a so-called sonic boomer. The response was recorded with a
hydrophone in a distance of about 3 m. The source-receiver line was orientated mainly per-
pendicular to the profile, slightly depending on the influences of wind and water waves. The
actual positions were registered by means of GPS receivers and local telemetric systems.

The profile consists of 2506 traces recorded up to 250 ms. The averaged distance between
the traces is about 0.67 m. The sampling rate 0.01 ms is extraordinary small, the frequency
content is 15 kHz. The raw data set is available inSEPlib format, the geometry is given in
a table.

The data set covers numerous very thin and mainly horizontal layers. The impedance con-
trast at the sea-bottom is very small indicating a weak consolidation of the mud. The floor
of the former surface mine is clearly visible in same regions and offers a good opportunity
to apply the remigration method.

The raw common-offset data set is not suited to apply the remigration method for several
reasons: the remigration programme expects the data on a regular grid, whereas the present
data set was acquired along a crooked line at non-equidistant locations. In addition, we
would have to apply a normal moveout correction to simulate an approximate zero-offset
data set.

4.3.2 Time-migrated data set

Supplementary to the raw common-offset data set, DMT GeoTec also provided a time-
migrated data set. According to the available specifications the raw data set was NMO
corrected with 1.48 km/s. Subsequently, a spherical geometrical spreading correction with
the same velocity was applied, followed by an automatic gain control (AGC) with a time
window of 30 ms.

Finally, a time migration with the constant velocity 1.3 km/s was applied to the prepared
data set. The result is shown in fig. 4.16 and contains 1682 equidistant traces with a length
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Figure 4.14: Field equipment: the sonic boomer is located on the left hand side of the
derrick, the hydrophone in the middle. The power source and the computers are located
aboard.
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Figure 4.15: Culmitzsch A profile 1560: locations of the common midpoints. The triangle
marks the first trace.
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Figure 4.16: Data set Culmitzsch A: time-migrated section forv= 1:3 km/s. The profile is
partly crooked.
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Figure 4.17: Data set Culmitzsch A: subset of the time-migrated section forv= 1:3 km/s.

of 130 ms. The sampling rate is again 0.01 ms. This data set is available inSEPlib with
separate geometry, too.

Apart from the curvature of the profile all problems which occurred for the remigration of
the raw data set are solved if we use the time-migrated data set. However, for small parts
of the profile we can take it as an approximately straight line with the exception of strongly
curved parts.

Remigration methods are applied to different parts of this data set. The most subsets under
consideration turn out to be more or less insensitive to velocity changes. In regions with
larger dips we obtain of course changes but it is impossible to estimate an optimum constant
migration velocity because significant structures like triplications and diffraction patterns
are missing. This means that all remigrated sections are likewise plausible for realistic
velocities.

In fig. 4.17 a subset of the time-migrated sections is shown for which the remigration yields
interpretable results. The strong event in this subset is a reflection from the floor of the
former surface mine.

We apply the remigration in the domain to this subset in two separate processes with the
initial velocity v0 = 1:3 km/s, on the one hand with 1000 steps and∆v= 1 m/s, on the other
hand with 1300 steps and∆v = �1 m/s. We use “normal” velocity and FD operators of
max. fourth order.

Both remigration results and the initial data set are merged to one data set covering veloc-
ities between 0 (equivalent to the zero-offset section) and 2.3 km/s. Some sections of this
merged data set are shown in fig. 4.18. It is no longer recognizable that this data set was
computed in two separate processes, we are unable to identify the initial data set in the
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result. According to this we can take the sections in fig. 4.18 as snapshots ofone single
remigration process.

The image of the floor of the former surface mine significantly changes during the remi-
gration process. Most noticeable are the hyperbolic smiles above the reflector for velocities
higher than approx. 2 km/s. They indicate a too high migration velocity. For lower veloc-
ities we observe structures below the left hand side of the reflector which we interpret as
so-called frownings. For the optimum constant migration velocity neither smiles nor frown-
ings should be visible. We observe the smallest artifacts of these kinds in the figs. 4.18g
and 4.18h. In this way we can estimate the optimum constant migration velocity to range
between 1.7 and 1.8 km/s.

The unavoidable noise in real data sets has obviously no consequences for the applicability
of the remigration programme. This was already shown for noisy synthetic data sets by
Jaya et al. [JSH96].
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Figure 4.18: Data set Culmitzsch A: time-remigrated section forv= a) 240, b) 480, c) 720,
d) 960, e) 1200, f) 1440, g) 1680, h) 1920, i) 2160, j) 2400, k) 2640 and l) 2880 m/s.



Chapter 5

Application of the NMO/DMO/MZO
program

5.1 Application of the NMO/DMO

5.1.1 Noise-free synthetic data set

To test the implementation, we use a simple model with a dome-like structure as shown
in fig. 5.1a. Several common-offset sections are simulated for this model by means of a
program of theSeismic Unix package based on the exploding reflector method. One of
this common-offset sections is shown in fig. 5.1b. Each common-offset section consists
of 201 traces spaced 10 m with 321 samples and a sampling rate of 2.5 ms. We generate
sections for seven different offsets between 100 and 400 m. The constant velocity above
the reflector is 2.5 km/s. We use a Ricker wavelet with a main frequency of 60 Hz.

We apply a NMO correction withv = 2:5 km/s to this data set including a geometrical
spreading correction1. Areas with a pulse stretch greater than 25% of the wavelet length
are muted.

The slice through the common-offset gather parallel to the offset axis in fig. 5.2a illustrates
the influence of the offset on the traveltimes. In fig. 5.2b the same slice is shown after the
NMO correction. For the chosen midpointξ = 0, i. e. for the horizontal apex of the dome,
the NMO correction immediately yields the correct result. The pulse stretch caused by the
NMO correction is clearly visible.

For dipping segments of the reflector it stands to reason that the NMO result still depends
on the offset. The offset depend traveltimes are shown in fig. 5.3a for a midpoint at the flank
of the dome. The difference of the NMO corrected traveltimes and the correct zero-offset

1The geometrical spreading correction is applied for line sources in 2D. A correction for point sources in
3D is also available.

55
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Figure 5.1: a) Model with a dome-like interface, b) common-offset section forh= 100 m.
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Figure 5.2: Slice through the common-offset data set a) before and b) after the NMO cor-
rection for a horizontal reflector segment.
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Figure 5.3: Slice through the common-offset data set a) after the NMO correction and b)
after the DMO process at the flank of the dome.

traveltimes increases with increasing offset and—not shown in this figure—with increasing
dip.

The unstacked simulated zero-offset sections computed with a NMO/DMO process are
shown in fig. 5.3b for one midpointξ at the flank of the dome. The influence of the dip on
the traveltimes is entirely corrected, though the amplitudes decrease with increasing offset
and increasing dip due to grid dispersion. The DMO process is applied with a maximum2

of 500 offset steps spaced 0.8 m.

Some snapshots of this DMO process are shown in fig. 5.4. We apply the DMO separately
for each initial offseth0 and stack all results with identical values of the propagation vari-
ableh. With decreasing offseth more and more common-offset sections contribute to the
stack, the entire initial data set contributes to the stack forh� h0min. The DMO correction
generates only very small artifacts, the visible artifacts originate from the input data set.
All common-offset sections interfere constructively in the stack indicating the consistency
of the method.

5.1.2 Noisy synthetic data set

We define another model with a dome-like interface and generate a synthetic common-
offset data set with 16 offsets spaced 12.5 m. The smallest offset ish = 0. Each section
consists of 121 traces spaced 25 m with 301 samples and a sampling rate of 4 ms. Contrary

2The maximum number of offset steps applies to the largest offset in the initial data set. For the subsequent
stacking we require constant offset steps∆h implying a smaller number of offset steps for smaller offsets.
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Figure 5.4: Post-stack snapshots of the DMO process forh= a) 367, b) 333, c) 300, d) 267,
e) 233, f) 200, g) 167, h) 133, i) 100, j) 67, k) 33 and l) 0 m.
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Figure 5.5: Common-offset section of the noisy data set for a)h= 88 and b) 188 m.

to the data set in section 5.1.1 we use a ray tracing program of theAM I G package [Han95]
to compute the traveltimes. By means of the programsynseis of the same package we
simulate the seismograms using a Gabor wavelet with a main frequency of 60 Hz. Finally,
we add synthetic noise with a signal/noise ratio of 1:1.

Two sections of the data set are shown in fig. 5.5. We can hardly see the dome in this figure
as well as in all other sections. Only the horizontal parts are slightly visible.

The data set is NMO corrected with the true model velocity including a geometrical spread-
ing correction and the muting of areas with a pulse stretch greater than 25% of the wavelet
length. The DMO process with a maximum of 500 offset steps spaced 0.375 m and sub-
sequent stacking yields a clear image of the reflector. As more and more information is
available with decreasing offset, the signal/noise ratio increases with decreasing offset. The
visible edge in the data set is due to the muting operation and causes some artifacts which
are not relevant in this particular case. The may be reduced or even eliminated by applying
a smooth taper at the edge of the muted area during the NMO correction.

5.2 Application of the MZO

5.2.1 Noise-free synthetic data set

The MZO in its original form proved unstable with all parameter and data sets under con-
sideration so far. To get on the track of this problem, we generate a small synthetic data set
and simplify the FD scheme as far as possible:
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Figure 5.6: Post-stack snapshots of the DMO process forh= a) 171, b) 156, c) 141, d) 125,
e) 109, f) 94, g) 78, h) 63, i) 47, j) 31, k) 16 and l) 0 m.
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Figure 5.7: Detail of pre-stack MZO snapshots a) without and b) with smoothing.

The model consists of a single plain reflector. We convolute the model with a Ricker wavelet
with a main frequency of 30 Hz to simulate a synthetic seismogram. For this horizontal
model without any dip the MZO problem reduces to the NMO correction. The data set
contains only one offseth= 400.

We simplified the FD scheme by omitting the partial derivative∂2=∂ξ2. This reduces the
problem to a one-dimensional problem and eliminates the influences of the edges of the
computational space. Under these conditions we expect to obtain exactly the same travel-
times as NMO correction would yield, too.

In spite of these simplifications the MZO is still unstable. The detail of the MZO result
in fig. 5.7a illustrates the problem: strongly increasing high frequency artifacts occur with
decreasing offset. This effect seems not to depend on the discretization intervals and is
reminiscent of similar results for the remigration in depth domain in section 4.1.2.

Picking the zero-crossings of the wavelet in the MZO result, we observe that the wavelet
length decreases from 25 ms forh= 400 m to 23.5 ms forh= 383 m. The frequency of the
wavelet increases with decreasing offset. As already discussed for the remigration in the
depth domain this leads to instability.

For the remigration in the depth domain with∆v < 0 we expect an increasing frequency
content, whereas we cannot explain this phenomenon for the MZO which is reduced to a
pure NMO correction in this case.

By smoothing the traces after each offset step we can reduce the high frequency artifacts. A
very simple smoothing operator, i. e. a linear combination of three neighbouring samples,
leads to stable processes under certain conditions. This smoothing operator is discussed
in appendix B. The data set shown in fig. 5.7b is generated with a smoothing parameter
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s= 0:32. This is equivalent to a convolution with the discrete operator(0:32;1;0:32)=1:64.
The larger the smoothing parameter, the more stable the process and the larger the stretch
of the wavelet. We chose the smallest value ofs just yielding a stable process.

Of course, the smoothing also affects the approximations of the first and second order
derivatives with respect to the time in the FD scheme (3.8). Therefore, we have to expect a
result depending on the smoothing operator.

At first glance, the result computed in this way looks promising: the frequency of the
wavelet hardly changes, the relation between the traveltime and the offset seems to be
hyperbolic as we would expect for a pure NMO correction. However, a closer look exposes
totally wrong traveltimes: for the initial valuet(h= 400m)= 649:5 ms and the model veloc-
ity v= 2500 m/s we have an analytic zero-offset traveltimeτ = t(h= 0m) = 565:2, but the
MZO yieldsτ = 578 ms. As necessary for the stability, the wavelet gets slightly stretched
during the MZO process. The mentioned values are related to the upper zero-crossing of
the wavelet which can easily be picked.

It is near at hand to hold the smoothing operator responsible for this discrepancy, and
indeed the discrepancy increases with increasing smoothing parameter. But obviously the
values not only deviate due to the smoothing: comparing the MZO results with and without
smoothing is only possible for a small range of offsets but yields significant traveltimes
anyway. For an offset ofh = 383 m we find 645 ms with smoothing, 644.5 ms without
smoothing, and 643 ms analytically. Even without the smoothing operator the traveltimes
deviate from the analytical values after a few offset steps.

For the sake of completeness we apply the MZO with smoothing to the noise-free common-
offset data set used in section 5.1.1. The stacked result is shown in fig. 5.8. As we have to
expect we obtain no constructive interference of the simulated sections. With each new
common-offset section contributing to the stack the images splits furthermore. The empir-
ically determined smoothing parameter for this data set iss= 0:029.

The stabilizing smoothing operator is applied trace by trace. Consequently, we assume that
one of the derivatives with respect to the time in the MZO image wave equation (2.54), in
particular the second order derivative, causes the instability. To obtain a better approxima-
tion of this second derivative, we try to calculate this derivative in the frequency domain:

We apply a fast Fourier transformation (FFT) with respect to the time after each offset step.
In the frequency domain we can only compute the second derivative∂2=∂t2, the calcula-
tion of the mixed derivative∂2=(∂t ∂h) is impossible due to the semi-explicit FD schemes,
because we would have to calculate∂

∂h(∂pl+1=∂t).

To calculate the second derivative, we proceed as follows: after each offset step we pad each
tracepl

i; j 8 i (l ; j = const) with zeros in that manner that we obtain a number of samples

nfft = 2[2+r(log2 n)] = 2[2+r(lnn= ln2)]. In this equation the functionr denotes the nearest natural
number greater than the argument ofr.

Subsequently, we transform the data set to the frequency domain trace by trace by means
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Figure 5.8: Post-stack snapshots of the MZO process with smoothing forh = a) 367, b)
334, c) 302, d) 269, e) 236, f) 203, g) 170, h) 138, i) 105, j) 72, k) 39 and l) 6 m. There is
no constructive interference of the simulated sections.
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of a FFT program by Press et al. [PTVF86], multiply it by an operatorΩ, and return to the
time domain.

This yields an array of second derivatives with respect to the time for all traces and times we
use to replace the second expression in equation (3.8). The padded zeros reduce the aliasing
effects due to the discrete Fourier transformation by shifting them to higher traveltimes
outside the region of interest.

The used operator has the analytical formΩ=�ω2, discrete and under consideration of the
current representation of the frequency values for the FFT we obtain a real-valued vector

Ω =

�
0;�

2π
n2

fft

;�
4π
n2

fft

; � � � ;
�2π(nfft �1)

n2
fft

;
�2πnfft

n2
fft

;
�2π(nfft �1)

n2
fft

; � � � ;�
2π
n2

fft

�
: (5.1)

The expression�2πnfft=n2
fft is the vector element no.nfft=2+1.

The numerous transformations required for the application of this operator lead to consider-
ably higher computational cost than the much simpler FD operators. Although this method
is more precise than the FD operators, the behaviour of the MZO process hardly changes:
instability and wrong traveltimes still occur. Therefore, the attempt to solve the initial value
problem for the MZO also fails and is not discussed any further.

Unfortunately, we have to conclude that the recent implementation of the MZO is not ap-
plicable, as it always leads to either instability or wrong traveltimes.



Chapter 6

Conclusion

6.1 Remigration

For homogeneous models the remigration both in the time and in the depth domain yields
kinematically correct results for the true model velocity. Apart from grid dispersion effects
occurring in particular in the vicinity of steep flanks, the results are comparable to the
results of conventional migration methods.

The grid dispersion is a purely numerical effect and may be reduced by using a finer grid
for the discretization and/or more accurate FD operators of higher order. The discussed
implementation is far from being exhausted in this respect. The interpolation of additional
traces and samples may also be used to improve the results.

A decisive advantage of the remigration compared with conventional migration methods
is the fact that an arbitrary number of images for many different velocity models can be
computed in one single process.

For the implemented FD schemes only the numerical resolution of the computer sets a
lower limit for the possible velocity steps: for too small∆v the finite differences will vanish
or get to inaccurate. This never happened for the cases under consideration so far. As a mat-
ter of fact several hundred or thousand velocity steps are sufficient to obtain good results.
A further decreasing of the step size does not lead to better results, the intrinsic resolution
of the computer is far higher than the required values.

The computational costs for an entire sequence of images is of the same order as for con-
ventional migration methods calculating onlyone singlemigrated image. Hence, the remi-
gration is a fast and efficient method for the generation of many migrated images.

A sequence of migrated images for a entire range of model velocities enables us to apply
interpretation methods which are quite costly with conventional methods: it is possible to
observe the (nearly continuous) propagation of the seismic images through the fictitious

65
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(v;~x)- or (v;x;y; t)-domain, respectively. In this way we can estimate the sensitivity of the
images to changes of the model. Furthermore, the optimum constant migration velocity
may be estimated by means of certain criteria like the continuity of the images, vanishing
triplications, or collapsing diffraction patterns. However, this implies that such structures
have to occur in the data set and/or the continuity of the images significantly changes,
otherwise the velocity estimation is hardly possible.

In the framework of this thesis all derivations are restricted to homogeneous models. This
is a crucial restriction for the application. As discussed for the Marmousi 3D overthrust
model, the method is also applicable to weakly inhomogeneous models with certain re-
strictions. Dipping events vanishing with increasing velocity indicate whether the model is
too inhomogeneous or not. As the remigration in the depth domain is much more sensitive
to velocity changes its application to inhomogeneous models is not recommended.

In principle the derivation of the seismic image wave equations may be generalized for
other simple models, e. g. models with a vertical velocity gradient, but we can hardly expect
to obtain straightforward image wave equations by all means. This problem remains for
future research.

The remigration in the time domain turned out to be a stable and useful tool for the process-
ing of post-stack data sets. As the remigration velocityv = 0 is related to the (simulated)
zero-offset section, remigration in the time domain can be applied to migrated as well as
unmigrated data sets. Time remigration is possible towards higher or lower velocities with-
out problems.

The remigration in the depth domain is applicable with certain restrictions. The frequency
content of the data set varies with the velocity as expected: it decreases with increasing ve-
locity and vice versa. This leads to the instability of the implemented FD schemes towards
lower velocities. Another problem is the mainly vertical propagation of the imaged reflec-
tors in the depth domain. The computational space must be chosen large enough to enclose
all images for all velocities under consideration, otherwise some of the imaged reflectors
will leave the computational space and cause artifacts due to the semi-explicit properties of
the FD schemes.

For purely kinematical studies and homogeneous models it is straightforward to transform
a data set from the time to the depth domain and vice versa. Hence, every actual remigration
problem may be solved in the time domain and subsequently be transformed to the depth
domain to avoid the problems in the depth domain. As the transformation depends on the
velocity, we cannot transform the entire result but have to transform each single section of
it separately with the corresponding velocity.
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6.2 NMO, DMO and MZO

A chained NMO and DMO with subsequent stacking yields the expected results for the
homogeneous models under consideration: the zero-offset sections separately simulated
for each initial offset are kinematically very close to the actual zero-offset section. As the
NMO and the stacking procedure are performed in a conventional way we will not discuss
them any further.

The actual DMO propagation process is numerically very stable and generates very few
artifacts, merely the amplitudes decrease with decreasing offset due to grid dispersion.
Therefore, the higher the initial offset, the smaller the contribution of the related common-
offset section to the stacked section. This may be controlled by a weighted stack.

As for the remigration, the usage of smaller discretization intervals and more accurate FD
operators of higher order should reduce the grid dispersion. In the DMO process only the
amplitudes are changed due to dispersion in contrast to the remigration with its kinemati-
cally relevant artifacts.

The DMO yields numerous images for an entire range of offsetshmax> h� 0 with small
computational costs. Once again it is possible to observe the quasi-continuous propagation
of the seismic images in the fictitious(ξ;τ)-domain. In this way the sensitivity of the image
to offset variations can be estimated.

The MZO without additional smoothing turned out to be unstable under all considered
conditions. This behaviour seems not to depend on the chosen discretization intervals and
other parameters. After a strong simplification of the problem for a 1D model for which
the MZO reduces to a NMO problem we observed two phenomena: on the one hand we
obtain too high traveltimes compared with the analytical results, i. e. the images propagate
to “slow”, on the other hand the frequency content of the data set increases with decreasing
offset.

The implemented FD schemes are unstable for increasing frequency content as we already
observed for the remigration problem in the depth domain. For the remigration in depth
domain we expect this behaviour, whereas we cannot explain this effect for the MZO prob-
lem.

The MZO process can be forced to be stable by suppressing the highest frequencies by
means of a smoothing operator depending on a parameter to be determined empirically.
However, this causes the seismic images to propagate even slower, the anyway too high
traveltimes deviate even more from the analytical values. Therefore, the MZO is not ap-
plicable even if we force the process to be stable.

Similar to the remigration problem for which we can avoid the problems in the depth do-
main by a transformation of the data set to the time domain, we can use the DMO correction
instead of the MZO. The transformation between the(ξ; t)- and the(ξ;τ)-domain is given
by the NMO correction. By analogy with the remigration we can transform DMO-corrected
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sections back into the(ξ; t)-domain separately for each offset by means of an inverse NMO.

This enables us to simulate not only zero-offset and NMO-corrected common-offset sec-
tions but also (uncorrected) common-offset sections.

6.3 Prospects

The discussed methods offer a lot of opportunities for future research. Some of them are
listed below very briefly:

� Extension of the theory for simple inhomogeneous models

� Solving the initial value problems with other methods as e. g. in the frequency domain

� Application of more accurate FD operators of higher order

� Better handling of the edges of the computational space, e. g. by means of absorbing
regions at the edges

� A more efficient implementation. The FD schemes are well-suited for parallel
processing.

The strategy to take seismic imaging problems as generalized wave propagation phenomena
may be applicable to other imaging problems, as well.
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Appendix A

Derivation of the FD operators

If we take the Taylor expansion of a functionu(s) at s0 and consider only terms up to the
first order, we obtain an FD operator of first order for the first derivative ofu:

u(s0+h) =
∞

∑
n=0

hn

n!
∂nu
∂sn

����
s0

= u(s0)+ h
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����
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With the same ansatz and under consideration of terms up to the second order, we obtain
the two following equations:

u(s0+h) � u(s0)+h
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Adding the equations (A.3) and (A.4) yields an FD operator of second order for the second
derivative ofu:

∂2u
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����
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�
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h2 (A.5)

To find an FD operator of fourth order for the second derivative, we expand the following
expressions up to the fourth order terms:
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Multiplying equations (A.6) and (A.7) by 16, adding them, and subtracting the equations
(A.8) and (A.9), we eliminate∂

4u
∂s4 . The discrete approximation for the second derivative

now reads
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Mixed derivatives can be calculated by approximating twice according to equation (A.2).
For a functionv(s; t) this yields
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as FD operator of first order.



Appendix B

Smoothing operator for the MZO

The numerical results in section 5.2 indicate the instability of the MZO under all tested
conditions. After few offset steps we already obtain quickly increasing high frequency arti-
facts. The MZO process can be forced to be stable by introducing an additional smoothing
operator. This operator is applied trace-by-trace after each offset step during the MZO
process.

The smoothing operator has a width of 2∆t and computes for each sample a linear combina-
tion of this sample and its two nearest neighbours along each trace. The size of the operator
is controlled by a parameter 0� s� 1. Its application corresponds to a convolution of each
trace with a (possibly truncated) triangle or—fors= 1—with a rectangle, respectively. In
fig. B.1 the operator is depicted for several values ofs. Written as equation, the operator
reads

p̂l
i; j = (s pl

i�1; j + pl
i; j +s pl

i+1; j)=(1+2s) 8 i; j : (B.1)

The smoothing operator has a strong impact on the stability of the MZO process. We were
able to force the process to be stable under all tested conditions, but the smoothing also
influences the calculated traveltimes. Due to this and due to the fact that the parameters
has to be determined for each application we consider this solution as quite unsatisfactory.

0

1

A
m

p
lit

u
d

e

s=1 s=0.5 s=0.25

l
i+2,j

l
i+1,j

l
i,j

l
i-1,j pl

i-2,jp p p p p l
i+2,j

l
i+1,j

l
i,j

l
i-1,j

l
i-2,jp p p p p l

i+2,j
l
i+1,j

l
i,j

l
i-1,j

l
i-2,jp p p p

Figure B.1: Smoothing operator for different values of parameters
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Appendix C

Used hard- and software

We implemented the described programmes on a SILICON GRAPHICS POWER CHAL -
LENGE L with IRIX 6.2 and presently 4 processors. Interactive applications were per-
formed on SILICON GRAPHICS O2 workstations withIRIX 6.3 and HEWLETT PACKARD

workstations series 700 withHP-UX 9.0.

In the beginning we used the languageRatfor, for the present implementationsFortran90.
For parameter handling and data I/O we used programmes of theSEPlib package (Stanford
Exploration Project).

For the 2D figures of the seismic data sets we used programmes of theSeismic Unix
package (Center of Wave Phenomena at Colorado School of Mines). The 3D figures were
generated with theApplication Visualization System AVS (Advanced Visual Systems).

The analytic graphs in section 2 were created with own programmes written in theInterac-
tive Data Language IDL (Research Systems). Programmes for the interpolation of data
sets and for the scaling of 4D remigration results are also written inIDL.

Most of the shown synthetic data sets and the conventional migration results were generated
with programmes of theSeismic Unix package. For additional synthetic data sets we used
theAM I G package [Han95].

This thesis was processed with LATEX2ε including several extensions, the bibliography was
generated with BIBTEX .

Furthermore we utilized various own and public domain programmes which can hardly be
enumerated in detail.
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