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& Basic concepts (l)

Basic ideas:
» entirely data-oriented approach
» no explicit parameterization of depth model

Inherent assumptions:

» coherent reflection events exist in the pre-stack
data

» paraxial approximation holds in vicinity of
central ray
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Basic concepts (I11)

Spatial CRS stacking operator:

parameterized by CRS wavefield attributes

actual properties of reflector segment
not required

second-order approximation of reflection
traveltime

determination by means of coherence analysis
In pre-stack data

generalization of well-known velocity analysis
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'\ Simplest case: 2-D ZO (11)

Traveltime approximation for 2-D:

2 (t Zsinam>2| 2t, cos” (mz | h? )
v\ 0 Vo | Vo Ry Rup

EAGE Conference & Exhibition, Florence 2002 — p.8



'\ Simplest case: 2-D ZO (1)
Traveltime approximation for 2-D:
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Traveltime approximation for 3-D:

2 2, ‘ 20y (T, PTow
thyp = t——C-m| +— (m Am+h Eh)
Vo Vo

EAGE Conference & Exhibition, Florence 2002 — p.11



'\ Extension to 3-D ZO (111)

Traveltime approximation for 3-D:
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& Extension to 2-D FO

Differences to the ZO case:
» central ray is a finite-offset ray

» downgoing and upgoing ray branches no
longer coincide

Consequences:
» other hypothetical experiments required
» Increased number of wavefield attributes
three wavefront curvatures
two propagation directions
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A Summary of extensions

Multi-parameter moveout operators
for data-oriented stacking

2-D zero-offset 2-D finite-offset
3 parameters < 5 parameters

\/

3-D zero-offset 3-D finite-offset
8 parameters 13 parameters
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& Topography (11)

Case II: “rugged” topography

» explicit consideration of shot and receiver
elevation required

» propagation directions and near-surface
velocity provide corrections

» Includes redatuming within first layer
» applicable to all configurations, 2-D/3-D, ZO/FO

» geometrical meaning of the attributes Is
preserved and refers to chosen datum
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& Conclusions

New features of the CRS stack method:
» central ray can be chosen arbitrarily

» any arbitrary configuration can be simulated
» applicable to 2-D and 3-D data

» topography can be considered for known
near-surface velocity

with a smooth model of the acquisition
surface

or actual source/receiver elevations for
complex topography
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Outlook

» development of efficient strategies for the
3-D application
for poor azimuthal coverage (marine data)
for regular azimuthal coverage (land data)

» Implementation of 2-D FO CRS stack
(completed)

» Implementation of 2-D CRS stack with
topography (in progress)

» Implementation of the 3-D counterparts
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