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» (semi-)interactive, interpretative velocity picking
» coarse picks on selected key events, only

0 human interaction required

0 low temporal and spatial resolution

[J pulse stretch deteriorates stack result

Thus desirable:

» automated approach
> more appropriate parameterization
» maximum resolution
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CRS stack

Generalization of conventional approach:

» second-order approximation of traveltime

» fully automated coherence-based application
» high-density analysis

» spatial stacking operator

[0 much more prestack traces used
[0 enhanced signal/noise ratio

» additional stacking parameters related to 1. and 2.
traveltime derivatives
[J geometrical interpretation
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XO CRS stack

NIP N\

Emergence direction and curvatures of hypothetical
wavefronts:

» exploding point source [J normal-incidence-point
(NIP) wave

» exploding reflector 0 normal (N) wave
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» fluctuations due to noise
» outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

[0 smooth variation along reflection events

[J event-consistent smoothing along reflection events
is justified!
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Why smoothing?

Bandwidth is limited. What happens along the wavelet?

» high-density stacking velocity
» systematic variation along wavelet
» smoothing reintroduces pulse stretch phenomenon

» CRS stacking parameters

» virtually constant along wavelet
» smoothing also allowed along wavelet without pulse
stretch
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Smooth model: stacking velocity vs. CRS parameters
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From: Mann and Hocht, 2003, Pulse stretch effects in the context of
data-driven imaging methods, 65th Conf., Eur. Assn. Geosci. Eng.
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Requirements:
» smoothing along reflection events justified [
» smoothing along wavelet justified [ Requirements
» remaining task: ensure event consistence

CRS stack provides:
» local shape of zero-offset reflection event (a, Ry)
» approximation of projected Fresnel zone
» coherence values as measure of reliability
0 this allows a simple and efficient smoothing algorithm
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For each zero-offset sample and each CRS parameter

» align smoothing window along reflection event using
emergence angle « (optionally also Ry)

» reject samples below given coherence threshold [ The algorithm
use only reliable attributes

» reject samples with dip difference beyond threshold
[J avoid mixing of intersecting events

» apply combined filter:

» median filter 0 remove outliers
» averaging [0 remove fluctuations

» assign result to zero-offset sample
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Size of smoothing window:
» as small as possible, as large as required
» temporal extension < wavelet length

» lateral extension < projected Fresnel zone, either
fixed or a fraction of approximate Fresnel zone given
by CRS parameters

The algorithm

Smoothing in the 3D case:
» smoothing window is a small volume
» same selection criteria as in 2D

» combined filter has to be generalized for curvature
matrices and slowness vectors
[0 current research
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Smoothing algorithm:
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>

event-consistent smoothing

based on CRS stacking parameters and coherence
removes outliers

removes fluctuations

preserves kinematic properties of reflection events
avoids mixing of intersecting events

improved quality of stacked section

more physical CRS stacking parameter sections for
various applications like macromodel determination
etc.
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