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Stacking velocity analysis:

» coherence analysis along second-order CMP
traveltime approximation
= [ocally coherent event

» coarse picking in velocity spectra
= simplified picking

» interpolation = smooth stacking velocity model

Dix inversion:

» assumption of 1-D model, vrus def Vstack Of

VRMS e Vbmo
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» retain coherence based analysis

Required tools:

» a generalized stacking velocity analysis
= Common-Reflection-Surface Stack

» a suitable inversion method
= NIP-wave tomography
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CRS wavefield attributes in 3-D

stacking & inversion of
locally coherent events
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method
Normal Wavefront
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lo zero-offset traveltime Wavefield attributes
] )
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Ax  midpoint displacement
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=

M, = 10 DKyD™

o,y azimuth & emergence angle of normal ray
D transformation ray-centered/global coordinates
Knip, Ky curvature matrix of NIP/normal wavefront
Vo near-surface velocity
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