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General properties: Kirchhoff migration
» integral solution of wave equation

» each point is considered as potential secondary
source (diffractor)

» macro-model required for Green’s functions
» weight function for true amplitudes available

Time migration:
» analytic migration operator
» analytic migration weights
» simplified model building

» small model error sensitivity
= well suited for amplitude analysis
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Kirchhoff migration

constructive contributions from tangency region only:

» aperture attached to stationary point
= depends on event dip

» width given by first projected Fresnel zone
= depends on event dip and curvature

Conventional approach: dip and curvature unknown
= aperture centered around operator apex

= size user given
» too small: loss of steep events
» too large: operator aliasing, noise
» general: migration artifacts, degraded amplitudes
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... extracts structural information from prestack data for
each sample: CRS stack

» emergence angle of normal ray
= event dip

» radius of normal-incidence-point (NIP) wave
= stacking and migration velocities

» curvature of normal wave
= avent curvature

That’s all information required for. . .
» (time) migration velocity model building
» determination of stationary points
» estimation of projected Fresnel zone
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Acquisition parameters:

Data example

» 2D land data, 12 km fixed spread geometry
» 50 m shot/receiver spacing

» 2ms sampling interval

» standard preprocessing

» amplitudes not preserved
= qualitative interpretation only

Main purpose:
Delineation of faults
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event-consistent smoothing

dip estimation very stable

= stable determination of stationary point
normal wave curvature less stable

= in worst case: plane wave approximation

Practical aspects
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» Preconditioning of CRS attributes
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» Preconditioning of CRS attributes
» Criteria for stationary points
» Transition from minimum to conventional aperture

> Amblgumes Practical aspects
» input domain: conflicting dip situations
= can be handled if available from CRS
» output domain: multiple stationary points
= similar strategy as in input domain
» problem: stable recognition of such situations
» not applied for the presented data
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